Ketogenesis

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Ketogenesis pathway. The three ketone bodies (acetoacetate, acetone and beta-hydroxy-butyrate) are marked within an orange box

Ketogenesis is the process by which ketone bodies are produced as a result of fatty acid breakdown.

Production[edit]

Ketone bodies are produced mainly in the mitochondria of liver cells, and synthesis can occur in response to unavailability of blood glucose. This is caused by low glucose levels in the blood, after exhaustion of cellular carbohydrate stores, such as glycogen or, synthesis of ketones can occur due to excessively high levels of blood glucose that are unable to be stored as glycogen in liver and muscle. The production of ketone bodies is then initiated to make available energy that is stored as fatty acids. Fatty acids are enzymatically broken down in β-oxidation to form acetyl-CoA. Under normal conditions, acetyl-CoA is further oxidized and its energy transferred as electrons to NADH, FADH2, and ATP in the citric acid cycle (TCA cycle). However, if the amounts of acetyl-CoA generated in fatty-acid β-oxidation challenge the processing capacity of the TCA cycle or if activity in the TCA cycle is low due to low amounts of intermediates such as oxaloacetate, acetyl-CoA is then used instead in biosynthesis of ketone bodies via acetoacyl-CoA and β-hydroxy-β-methylglutaryl-CoA (HMG-CoA). Deaminated amino acids that are ketogenic, such as leucine, also feed the TCA cycle, forming acetoacetate & ACoA and thereby produce ketones.

Besides its role in the synthesis of ketone bodies, HMG-CoA is also an intermediate in the synthesis of cholesterol.

Types of ketone bodies[edit]

The three ketone bodies, each synthesized from acetyl-CoA molecules, are:

Regulation[edit]

Ketogenesis may or may not occur, depending on levels of available carbohydrates in the cell or body. This is closely related to the paths of acetyl-CoA:

  • When the body has ample carbohydrates available as energy source, glucose is completely oxidized to CO2; acetyl-CoA is formed as an intermediate in this process, first entering the citric acid cycle followed by complete conversion of its chemical energy to ATP in oxidative phosphorylation.
  • When the body has excess carbohydrates available, some glucose is fully metabolized, and some of it is stored in the form of glycogen or, upon citrate excess, as fatty acids. (CoA is also recycled here.)
  • When the body has no free carbohydrates available, fat must be broken down into acetyl-CoA in order to get energy. Acetyl-CoA is not being recycled through the citric acid cycle because the citric acid cycle intermediates (mainly oxaloacetate) have been depleted to feed the gluconeogenesis pathway, and the resulting accumulation of acetyl-CoA activates ketogenesis.

Pathology[edit]

Ketone bodies are created at moderate levels in everyone's bodies, such as during sleep and other times when no carbohydrates are available. However, when ketogenesis is happening at higher-than-normal levels, the body is said to be in a state of ketosis. This condition is purposely invoked by some for its perceived health benefits.

Both acetoacetate and beta-hydroxybutyrate are acidic, and, if levels of these ketone bodies are too high, the pH of the blood drops, resulting in ketoacidosis. Ketoacidosis is known to occur in untreated type I diabetes (see diabetic ketoacidosis) and in alcoholics after prolonged binge-drinking without intake of sufficient carbohydrates (see alcoholic ketoacidosis). Less commonly, some patients with poorly controlled type 2 diabetes may have detectable levels of plasma ketones without significant acidosis.

See also[edit]

References[edit]

  1. ^ Glew, Robert H. "You Can Get There From Here: Acetone, Anionic Ketones and Even-Carbon Fatty Acids can Provide Substrates for Gluconeogenesis". Retrieved August 2013. 
  2. ^ Miller DN, Bazzano G; Bazzano (1965). "Propanediol metabolism and its relation to lactic acid metabolism". Ann NY Acad Sci 119 (3): 957–973. Bibcode:1965NYASA.119..957M. doi:10.1111/j.1749-6632.1965.tb47455.x. PMID 4285478. 
  3. ^ Ruddick JA (1972). "Toxicology, metabolism, and biochemistry of 1,2-propanediol". Toxicol App Pharmacol 21: 102–111. doi:10.1016/0041-008X(72)90032-4. 

External links[edit]