Klystron

From Wikipedia, the free encyclopedia
  (Redirected from Klystron tube)
Jump to: navigation, search
For the high-speed switching arc-discharge tube, see Krytron.
High-power klystron used for spacecraft communication at the Canberra Deep Space Communications Complex.
5kW klystron tube used as power amplifier in UHF television transmitter, 1952. When installed, the tube projects through holes in the center of the cavity resonators, with the sides of the cavities making contact with the metal rings on the tube.

A klystron is a specialized linear-beam vacuum tube, invented in 1937 by American electrical engineers Russel and Sigurd Varian,[1] which is used as an amplifier for high radio frequencies, from UHF up into the microwave range. Low-power klystrons are used as local oscillators in superheterodyne radar receivers, while high-power klystrons are used as output tubes in UHF television transmitters, microwave relay, satellite communication, and radar transmitters, and to generate the drive power for modern particle accelerators.

In the klystron, an electron beam interacts with the radio waves as it passes through resonant cavities, metal boxes along the length of the tube.[2] The electron beam first passes through a cavity to which the input signal is applied. The energy of the electron beam amplifies the signal, and the amplified signal is taken from a cavity at the other end of the tube. The output signal can be coupled back into the input cavity to make an electronic oscillator to generate radio waves. The gain of klystrons can be high, 60 dB (one million) or more, with output power up to tens of megawatts, but the bandwidth is narrow, usually a few percent although it can be up to 10% in some devices.[2]

A reflex klystron is an obsolete type in which the electron beam was reflected back along its path by a high potential electrode, used as an oscillator.

The name klystron comes from the stem form κλυσ- (klys) of a Greek verb referring to the action of waves breaking against a shore, and the suffix -τρον ("tron") meaning the place where the action happens.[3] The name "klystron" was suggested by Hermann Fränkel, a professor in the classics department at Stanford University when the klystron was under development.[4]

History[edit]

The brothers Russell and Sigurd Varian of Stanford University are the inventors of the klystron. Their prototype was completed and demonstrated successfully on August 30, 1937.[5] Upon publication in 1939,[6] news of the klystron immediately influenced the work of US and UK researchers working on radar equipment. The Varians went on to found Varian Associates to commercialize the technology (for example, to make small linear accelerators to generate photons for external beam radiation therapy). Their work built on the description of velocity modulation by A. Arsenjewa-Heil and Oskar Heil (wife and husband) in 1935, though the Varians were probably unaware of the Heils' work.[7]

The work of physicist W.W. Hansen was instrumental in the development of the klystron and was cited by the Varian brothers in their 1939 paper. His resonator analysis, which dealt with the problem of accelerating electrons toward a target, could be used just as well to decelerate electrons (i.e., transfer their kinetic energy to RF energy in a resonator). During the second World War, Hansen lectured at the MIT Radiation labs two days a week, commuting to Boston from Sperry gyroscope company on Long Island. His resonator was called a "rhumbatron" by the Varian brothers.[1] Hansen died of beryllium disease in 1949 as a result of exposure to beryllium oxide (BeO).

During the Second World War, the Axis powers relied mostly on (then low-powered and long wavelength) klystron technology for their radar system microwave generation, while the Allies used the far more powerful but frequency-drifting technology of the Cavity magnetron for much shorter one centimeter microwave generation. Klystron tube technologies for very high-power applications, such as synchrotrons and radar systems, have since been developed.

Right after WW II AT&T used 4 watt klystrons in its brand new network of microwave links that covered the US continent.[citation needed] The network provided long distance telephone service and also carried television signals for the major TV networks. Western Union Telegraph Company also built point-to-point microwave communication links using intermediate repeater stations at about 40 mile intervals at that time, using 2K25 reflex klystrons in both the transmitters and receivers.

How it works[edit]

Klystron oscillator from 1944. The electron gun is on the right, the collector on the left. The two cavity resonators are in center, linked by a short coaxial cable to provide positive feedback.

Klystrons amplify RF signals by converting the kinetic energy in a DC electron beam into radio frequency power. A beam of electrons is produced by a thermionic cathode (a heated pellet of low work function material), and accelerated by high-voltage electrodes (typically in the tens of kilovolts). This beam is then passed through an input cavity resonator. RF energy is fed into the input cavity at, or near, its resonant frequency, creating standing waves, which produce an oscillating voltage which acts on the electron beam. The electric field causes the electrons to "bunch": electrons that pass through when the electric field opposes their motion are slowed, while electrons which pass through when the electric field is in the same direction are accelerated, causing the previously continuous electron beam to form bunches at the input frequency. To reinforce the bunching, a klystron may contain additional "buncher" cavities. The beam then passes through a "drift" tube in which the faster electrons catch up to the slower ones, creating the "bunches", then through a "catcher" cavity. In the output "catcher" cavity, each bunch enters the cavity at the time in the cycle when the electric field opposes the electrons' motion, decelerating them. Thus the kinetic energy of the electrons is converted to potential energy of the field, increasing the amplitude of the oscillations. The oscillations excited in the catcher cavity are coupled out through a coaxial cable or waveguide. The spent electron beam, with reduced energy, is captured by a collector electrode.

To make an oscillator, the output cavity can be coupled to the input cavity(s) with a coaxial cable or waveguide. Positive feedback excites spontaneous oscillations at the resonant frequency of the cavities.

Two-cavity klystron amplifier[edit]

Klystron.enp.gif

In the two-cavity klystron, there are two microwave cavity resonators, the "catcher" and the "buncher". When used as an amplifier, the weak microwave signal to be amplified is applied to the buncher cavity through a coaxial cable or waveguide, and the amplified signal is extracted from the catcher cavity.

At one end of the tube is the hot cathode heated by a filament which produces electrons. The electrons are attracted and pass through an anode cylinder at a high positive potential; these act as an electron gun to produce a high velocity stream of electrons. An external electromagnet winding creates a longitudinal magnetic field along the beam axis which prevents the beam from spreading.

The beam first passes through the "buncher" cavity resonator, through grids attached to each side. The buncher grids have an oscillating AC potential across them, produced by standing wave oscillations within the cavity, excited by the input signal at the cavity's resonant frequency applied by a coaxial cable or waveguide. The direction of the field between the grids changes twice per cycle of the input signal. Electrons entering when the entrance grid is negative and the exit grid is positive encounter an electric field in the same direction as their motion, and are accelerated by the field. Electrons entering a half-cycle later, when the polarity is opposite, encounter an electric field which opposes their motion, and are decelerated.

Beyond the buncher grids is a space called the drift space. This space is long enough so that the accelerated electrons catch up to the retarded electrons, forming "bunches" longitudinally along the beam axis. It's length is chosen to allow maximum bunching at the resonant frequency, and may be several feet long.

The electrons then pass through a second cavity, called the "catcher", through a similar pair of grids on each side of the cavity. The function of the catcher grids is to absorb energy from the electron beam. The bunches of electrons passing through excite standing waves in the cavity, which has the same resonant frequency as the buncher cavity. Each bunch of electrons passes between the grids at a point in the cycle when the exit grid is negative with respect to the entrance grid, so the electric field in the cavity between the grids opposes the electrons motion. The electrons thus do work on the electric field, and are decelerated, their kinetic energy is converted to electric potential energy, increasing the amplitude of the oscillating electric field in the cavity. Thus the oscillating field in the catcher cavity is an amplified copy of the signal applied to the buncher cavity. The amplified signal is extracted from the catcher cavity through a coaxial cable or waveguide.

After passing through the catcher and giving up its energy, the lower energy electron beam is absorbed by a "collector" electrode.

Two-cavity klystron oscillator[edit]

The two-cavity klystron amplifier is readily turned into an oscillator by connecting the catcher and buncher cavities with a short coaxial cable or waveguide. The cable acts as a feedback path, applying some of the output energy to the input to provide positive feedback. This excites spontaneous oscillations in the cavities at the cavities' resonant frequency. When power to the tube is turned on, random electrical noise in the input cavity modulates the electron beam, providing a signal to get oscillations started. The noise is amplified in the catcher cavity and fed back to the buncher cavity. Since the cavities have very high Q factor, only energy at the resonant frequency is amplified, so the output signal quickly becomes a sine wave.

Two-cavity oscillator klystrons have the advantage of being among the lowest-noise microwave sources available, and for that reason have often been used in the illuminator systems of missile targeting radars. The two-cavity oscillator klystron normally generates more power than the reflex klystron—typically watts of output rather than milliwatts. Since there is no reflector, only one high-voltage supply is necessary to cause the tube to oscillate, the voltage must be adjusted to a particular value. This is because the electron beam must produce the bunched electrons in the second cavity in order to generate output power. Voltage must be adjusted to vary the velocity of the electron beam (and thus the frequency) to a suitable level due to the fixed physical separation between the two cavities. Often several "modes" of oscillation can be observed in a given klystron.

Reflex klystron[edit]

Low-power Russian reflex klystron from 1963. The cavity resonator from which the output is taken, is attached to the electrodes labeled Externer Resonator. Reflex klystrons are almost obsolete now.
Reflex.sch.enp.svg
cutaway of a reflex klystron
cutaway: reflex klystron[8]
Main article: Sutton tube

In the reflex klystron (also known as a Sutton tube after one of its inventors, Robert Sutton), the electron beam passes through a single resonant cavity. The electrons are fired into one end of the tube by an electron gun. After passing through the resonant cavity they are reflected by a negatively charged reflector electrode for another pass through the cavity, where they are then collected. The electron beam is velocity modulated when it first passes through the cavity. The formation of electron bunches takes place in the drift space between the reflector and the cavity. The voltage on the reflector must be adjusted so that the bunching is at a maximum as the electron beam re-enters the resonant cavity, thus ensuring a maximum of energy is transferred from the electron beam to the RF oscillations in the cavity. The reflector voltage may be varied slightly from the optimum value, which results in some loss of output power, but also in a variation in frequency. This effect is used to good advantage for automatic frequency control in receivers, and in frequency modulation for transmitters. The level of modulation applied for transmission is small enough that the power output essentially remains constant. At regions far from the optimum voltage, no oscillations are obtained at all.

There are often several regions of reflector voltage where the reflex klystron will oscillate; these are referred to as modes. The electronic tuning range of the reflex klystron is usually referred to as the variation in frequency between half power points—the points in the oscillating mode where the power output is half the maximum output in the mode.

Modern semiconductor technology has effectively replaced the reflex klystron in most applications.

Multicavity klystron[edit]

Large klystrons as used in the storage ring of the Australian Synchrotron to maintain the energy of the electron beam

In all modern klystrons, the number of cavities exceeds two. A larger number of cavities may be used to increase the gain of the klystron, or to increase the bandwidth.

Tuning a klystron[edit]

Some klystrons have cavities that are tunable. Tuning a klystron is delicate work which, if not done properly, can cause damage to equipment or injury to the technician.[why?] By adjusting the frequency of individual cavities, the technician can change the operating frequency, gain, output power, or bandwidth of the amplifier. The technician must be careful not to exceed the limits of the graduations, or damage to the klystron can result.

Manufacturers generally send a card with the unique calibrations for a klystron's performance characteristics, that lists the graduations to be set to attain any of a set of listed frequencies. No two klystrons are exactly identical (even when comparing like part/model number klystrons), and so every card is specific to the individual unit. Klystrons have serial numbers on each of them to uniquely identify each unit, and for which manufacturers may (hopefully) have the performance characteristics in a database. If not, loss of the calibration card may be an economically insoluble problem, making the klystron unusable or perform marginally un-tuned.

Other precautions taken when tuning a klystron include using nonferrous tools. Some klystrons employ permanent magnets. If a technician uses ferrous tools, (which are ferromagnetic), and comes too close to the intense magnetic fields that contain the electron beam, such a tool can be pulled into the unit by the intense magnetic force, smashing fingers, injuring the technician, or damaging the unit. Special lightweight nonmagnetic (aka diamagnetic) tools made of beryllium alloy have been used for tuning U.S. Air Force klystrons.

Precautions are routinely taken when transporting klystron devices in aircraft, as the intense magnetic field can interfere with magnetic navigation equipment. Special overpacks are designed to help limit this field "in the field," and thus allow such devices to be transported safely.

Optical klystron[edit]

The technique of amplification used in the klystron is also being applied experimentally at optical frequencies in a type of laser called the free-electron laser (FEL); these devices are called optical klystrons.[9] Instead of microwave cavities, these use devices called undulators. The electron beam passes through an undulator, in which a laser light beam causes bunching of the electrons. Then the beam passes through a second undulator, in which the electron bunches cause oscillation to create a second, more powerful light beam.[9]

Floating drift tube klystron[edit]

The floating drift tube klystron has a single cylindrical chamber containing an electrically isolated central tube. Electrically, this is similar to the two cavity oscillator klystron with a lot of feedback between the two cavities. Electrons exiting the source cavity are velocity modulated by the electric field as they travel through the drift tube and emerge at the destination chamber in bunches, delivering power to the oscillation in the cavity. This type of oscillator klystron has an advantage over the two-cavity klystron on which it is based. It only needs one tuning element to effect changes in frequency. The drift tube is electrically insulated from the cavity walls, and DC bias is applied separately. The DC bias on the drift tube may be adjusted to alter the transit time through it, thus allowing some electronic tuning of the oscillating frequency. The amount of tuning in this manner is not large and is normally used for frequency modulation when transmitting.

Collector[edit]

After the RF energy has been extracted from the electron beam, the beam is destroyed in a collector. Some klystrons include depressed collectors, which recover energy from the beam before collecting the electrons, increasing efficiency. Multistage depressed collectors enhance the energy recovery by "sorting" the electrons in energy bins.

Applications[edit]

Klystrons can produce far higher microwave power outputs than solid state microwave devices such as Gunn diodes. In modern systems, they are used from UHF (hundreds of MHz) up through hundreds of gigahertz (as in the Extended Interaction Klystrons in the CloudSat satellite). Klystrons can be found at work in radar, satellite and wideband high-power communication (very common in television broadcasting and EHF satellite terminals), medicine (radiation oncology), and high-energy physics (particle accelerators and experimental reactors). At SLAC, for example, klystrons are routinely employed which have outputs in the range of 50 megawatts (pulse) and 50 kilowatts (time-averaged) at 2856 MHz. The Arecibo Planetary Radar uses two klystrons that provide a total power output of 1 megawatt (continuous) at 2380 MHz.[10]

Popular Science's "Best of What's New 2007"[11][12] described a company, Global Resource Corporation, currently defunct, using a klystron to convert the hydrocarbons in everyday materials, automotive waste, coal, oil shale, and oil sands into natural gas and diesel fuel.[13]

See also[edit]

References[edit]

  1. ^ a b Pond, Norman H. "The Tube Guys". Russ Cochran, 2008 p.31-40
  2. ^ a b Gilmour, A. S. (2011). Klystrons, Traveling Wave Tubes, Magnetrons, Cross-Field Amplifiers, and Gyrotrons. Artech House. pp. 3–4. ISBN 1608071847. 
  3. ^ Varian, R. H.; Varian, S. F. (1939). "A High Frequency Oscillator and Amplifier". Journal of Applied Physics 10 (5): 321. Bibcode:1939JAP....10..321V. doi:10.1063/1.1707311. 
  4. ^ Varian, Dorothy. "The Inventor and the Pilot". Pacific Books, 1983 p. 189
  5. ^ Varian, Dorothy. "The Inventor and the Pilot". Pacific Books, 1983 p. 187
  6. ^ Varian, R. H.; Varian, S. F. (1939). "A High Frequency Oscillator and Amplifier". Journal of Applied Physics 10 (5): 321. Bibcode:1939JAP....10..321V. doi:10.1063/1.1707311. 
  7. ^ George Caryotakis (November 18, 1997). "Invited paper: The Klystron: A microwave source of surprising range and endurance". American Physics Society: Division of Plasma Physics Conference, Pittsburg, PA (Stanford, CA: Stanford SLAC). 
  8. ^ http://www.radiomuseum.org/tubes/tube_v-260.html
  9. ^ a b Bonifacio, R.; Corsini, R.; Pierini, P. (15 March 1992). "Theory of the high gain optical klystron". Physical Review A 45 (6): 45. Retrieved June 24, 2014. 
  10. ^ Campbell, D. B.; Hudson, R. S., Margot, J. L. (2002). "Advances in Planetary Radar Astronomy". Review of Radio Science. 1999-2002: 869–899. 
  11. ^ "PopSci's Best of What's New 2007". Popsci.com. Retrieved 2010-02-28. 
  12. ^ "PopSci's Best of What's New 2007". Popsci.com. Retrieved 2010-02-28. 
  13. ^ US Patent 7629497 - Microwave-based recovery of hydrocarbons and fossil fuels Issued on December 8, 2009

External links[edit]