Kravchuk polynomials

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Kravchuk polynomials or Krawtchouk polynomials (also written using several other transliterations of the Ukrainian name "Кравчу́к") are discrete orthogonal polynomials associated with the binomial distribution, introduced by Mikhail Kravchuk (1929). The first few polynomials are (for q=2):

  • \mathcal{K}_0(x; n) = 1
  • \mathcal{K}_1(x; n) = -2x + n
  • \mathcal{K}_2(x; n) = 2x^2 - 2nx + {n\choose 2}
  • \mathcal{K}_3(x; n) = -\frac{4}{3}x^3 + 2nx^2 - (n^2 - n + \frac{2}{3})x + {n \choose 3}.

The Kravchuk polynomials are a special case of the Meixner polynomials of the first kind.

Definition[edit]

For any prime power q and positive integer n, define the Kravchuk polynomial

\mathcal{K}_k(x; n) = \mathcal{K}_k(x) = \sum_{j=0}^{k}(-1)^j (q-1)^{k-j} \binom {x}{j} \binom{n-x}{k-j}, \quad k=0,1, \ldots, n.

Properties[edit]

The Kravchuk polynomial has following alternative expressions:

\mathcal{K}_k(x; n) = \sum_{j=0}^{k}(-q)^j (q-1)^{k-j} \binom {n-j}{k-j} \binom{x}{j}.
\mathcal{K}_k(x; n) = \sum_{j=0}^{k}(-1)^j q^{k-j} \binom {n-k+j}{j} \binom{n-x}{k-j}.

Orthogonality relations[edit]

For nonnegative integers r, s,

\sum_{i=0}^n\binom{n}{i}(q-1)^i\mathcal{K}_r(i; n)\mathcal{K}_s(i; n) = q^n(q-1)^r\binom{n}{r}\delta_{r,s}.

See also[edit]

References[edit]

External links[edit]