Learnable Evolution Model

From Wikipedia, the free encyclopedia
Jump to: navigation, search

The Learnable Evolution Model (LEM) is a novel, non-Darwinian methodology for evolutionary computation that employs machine learning to guide the generation of new individuals (candidate problem solutions). Unlike standard, Darwinian-type evolutionary computation methods that use random or semi-random operators for generating new individuals (such as mutations and/or recombinations), LEM employs hypothesis generation and instantiation operators.

The hypothesis generation operator applies a machine learning program to induce descriptions that distinguish between high-fitness and low-fitness individuals in each consecutive population. Such descriptions delineate areas in the search space that most likely contain the desirable solutions. Subsequently the instantiation operator samples these areas to create new individuals. LEM has been modified from optimization domain to classification domain by augmented LEM with ID3. (February 2013 by M. Elemam Shehab, K. Badran, M. Zaki and Gouda I. Salama.

Selected References[edit]

  • M. Elemam Shehab (February 2013),"A Generic Feature Extraction Model using Learnable Evolution Models (LEM+ID3) ", International Journal of Computer Applications,Volume 64, Number 11.
  • Cervone, P.; Franzese (January 2010), "Machine Learning for the Source Detection of Atmospheric Emissions", Proceedings of the 8th Conference on Artificial Intelligence Applications to Environmental Science, Code J1.7 (Atlanta, GA) 
  • Wojtusiak, J.; Michalski, R. S. (July 8–12, 2006), "The LEM3 Implementation of Learnable Evolution Model and Its Testing on Complex Function Optimization Problems", Proceedings of Genetic and Evolutionary Computation Conference, GECCO 2006 (Seattle, WA): 1281, doi:10.1145/1143997.1144197 
  • Wojtusiak, J. (July 8–12, 2006), "Initial Study on Handling Constrained Optimization Problems in Learnable Evolution Model", Proceedings of the Graduate Student Workshop at Genetic and Evolutionary Computation Conference, GECCO 2006 (Seattle, WA) 
  • Jourdan, L.; Corne, D.; Savic, D.; Walters, G. (2005), "Preliminary Investigation of the ‘Learnable Evolution Model’ for Faster/Better Multiobjective Water Systems Design", Proceedings of the Third Int. Conference on Evolutionary Multi-Criterion Optimization, EMO’05 
  • Domanski, P. A.; Yashar, D.; Kaufman, K.; Michalski, R. S. (April 2004), "An Optimized Design of Finned-Tube Evaporators Using the Learnable Evolution Model", International Journal of Heating, Ventilating, Air-Conditioning and Refrigerating Research 10: 201–211 
  • Kaufman, K.; Michalski, R. S. (2000), "Applying Learnable Evolution Model to Heat Exchanger Design", Proceedings of the Seventeenth National Conference on Artificial Intelligence (AAAI-2000) and Twelfth Annual Conference on Innovative Applications of Artificial Intelligence (IAAI-2000) (Austin, TX): 1014–1019 
  • Cervone, G.; Michalski, R. S.; Kaufman, K. A. (July 2000), "Experimental Validations of the Learnable Evolution Model", 2000 Congress on Evolutionary Computation (San Diego CA): 1064–1071 
  • Michalski, R. S. (2000), "LEARNABLE EVOLUTION MODEL Evolutionary Processes Guided by Machine Learning", Machine Learning 38: 9–40, doi:10.1023/A:1007677805582 
  • Michalski, R .S. (June 11–13, 1998), "Learnable Evolution: Combining Symbolic and Evolutionary Learning", Proceedings of the Fourth International Workshop on Multistrategy Learning (MSL'98) (Desenzano del Garda, Italy): 14–20