Lentivirus

From Wikipedia, the free encyclopedia
Jump to: navigation, search
lentivirus
Virus classification
Group: Group VI (ssRNA-RT)
Order: Unassigned
Family: Retroviridae
Subfamily: Orthoretrovirinae
Genus: Lentivirus
Type species
Human immunodeficiency virus 1
Species

Bovine lentivirus group

Bovine immunodeficiency virus
Jembrana disease virus

Equine lentivirus group

Equine infectious anemia virus

Feline lentivirus group

Feline immunodeficiency virus
Puma lentivirus

Ovine/caprine lentivirus group

Caprine arthritis encephalitis virus
Visna/maedi virus

Primate lentivirus group

Human immunodeficiency virus 1
Human immunodeficiency virus 2
Simian immunodeficiency virus

Lentivirus (lente-, Latin for "slow") is a genus of viruses of the Retroviridae family, characterized by a long incubation period. Lentiviruses can deliver a significant amount of viral RNA into the DNA of the host cell and have the unique ability among retroviruses of being able to infect non-dividing cells, so they are one of the most efficient methods of a gene delivery vector. HIV, SIV, FIV, EIAV, and Visna are all examples of lentiviruses.

Classification[edit]

Five serogroups of lentiviruses are recognized, reflecting the vertebrate hosts with which they are associated (primates, sheep and goats, horses, cats, and cattle). The primate lentiviruses are distinguished by the use of CD4 protein as a receptor and the absence of dUTPase. Some groups have cross-reactive gag antigens (e.g., the ovine, caprine and feline lentiviruses). Antibodies to gag antigens in lions and other large felids indicate the existence of other viruses related to FIV and the ovine/caprine lentiviruses. Description is on taxonomic level of genus.

Morphology[edit]

The virions are enveloped, slightly pleomorphic, spherical and measure 80–100 nm in diameter. Projections of envelope make the surface appear rough, or tiny spikes (about 8 nm) may be dispersed evenly over the surface. The nucleocapsids (cores) are isometric. The nucleoids are concentric and rod-shaped, or shaped like a truncated cone.

Genome organization and replication[edit]

Features of the genome: infectious viruses have three main genes coding for the viral proteins in the order: 5´-gag-pol-env-3´. There are two regulatory genes, tat and rev. There are additional accessory genes depending on the virus (e.g., for HIV-1: vif, vpr, vpu, nef) whose products are involved in regulation of synthesis and processing viral RNA and other replicative functions. The Long terminal repeat (LTR) is about 600nt long, of which the U3 region is 450, the R sequence 100 and the U5 region some 70 nt long.

Viral proteins involved in early stages of replication include Reverse Transcriptase and Integrase. Reverse Transcriptase is the virally encoded RNA-dependent DNA polymerase. The enzyme uses the viral RNA genome as a template for the synthesis of a complementary DNA copy. Reverse transcriptase also has RNaseH activity for destruction of the RNA-template. Integrase binds both the viral cDNA generated by reverse transcriptase and the host DNA. Integrase processes the LTR before inserting the viral genome into the host DNA. Tat acts as a trans-activator during transcription to enhance initiation and elongation. The Rev responsive element acts post-transcriptionally, regulating mRNA splicing and transport to the cytoplasm.[1]

Proteome[edit]

The lentiviral proteome consists of five major structural proteins and 3-4 non-structural proteins (3 in the primate lentiviruses). Structural proteins listed here by protein size:

  1. Gp120 glycosylated surface envelope protein SU, encoded by the viral gene env. Largest 120000 Da (Daltons).
  2. Gp41 glycosylated transmembrane envelope protein TM, also encoded by the viral gene env. 2nd largest 41000 Da.
  3. P24 non-glycosylated capsid protein CA, encoded by the viral gene gag. 3rd largest 24000 Da.
  4. P17 non-glycosylated matrix protein MA, also encoded by gag. 4th largest 17000 Da.
  5. Non-glycosylated capsid protein NC, also encoded by gag. 5th largest 7000-11000 Da.
  • The envelope proteins SU and TM are glycosylated in at least some lentiviruses (HIV, SIV), if not all of them. Glycosylation seems to play a structural role in the concealment and variation of antigenic sites necessary for the host to mount an immune system response.

Non-structural proteins listed here:

  1. Reverse transcriptase encoded by the pol gene. Protein size 66000 Da.
  2. Integrase IN also encoded by the pol gene. Protein size 32000 Da.
  3. Protease PR encoded by the pro gene. dUPTase DU, the role of which is still unknown. Protein size 14000 Da.

Antigenic properties[edit]

Serological Relationships: Antigen determinants are type-specific and group-specific. Antigen determinants that possess type-specific reactivity are found on the envelope. Antigen determinants that possess type-specific reactivity and are involved in antibody mediated neutralization are found on the glycoproteins. Cross-reactivity has been found among some species of the same serotype, but not between members of different genera. Classification of members of this taxon is infrequently based on their antigenic properties.

Biological[edit]

Physicochemical and physical properties[edit]

Classed as having class C morphology

  • Nucleic Acid
    • Virions contain 2% nucleic acid
    • Genome consists of a dimer
    • Virions contain one molecule of (each) linear positive-sense single stranded RNA.
    • Total genome length is of one monomer 9200 nt
    • Genome sequence has terminal repeated sequences; long terminal repeats (LTR) (of about 600 nt
    • The 5' end of the genome has a cap
    • Cap sequence of type 1 m7G5ppp5'GmpNp
    • 3' end of each monomer has a poly (A) tract; 3'-terminus has a tRNA-like structure (and accepts lysin)
    • Encapsidated nucleic acid are solely genomic
    • 2 copies packed per particle (held together by hydrogen bonds to form a dimer).
  • There are 11 proteins
    • Virions contain 60% protein
    • Five (major)structural virion proteins have been found so far

Practical applications[edit]

Lentiviral Delivery of designed shRNA's and the mechanism of RNA interference in mammalian cells.

Lentivirus is primarily a research tool used to introduce a gene product into in vitro systems or animal models. Large-scale collaborative efforts are underway to use lentiviruses to block the expression of a specific gene using RNA interference technology in high-throughput formats.[2] The expression of short-hairpin RNA (shRNA) reduces the expression of a specific gene, thus allowing researchers to examine the necessity and effects of a given gene in a model system. These studies can be a precursor to the development of novel drugs which aim to block a gene-product to treat diseases.

Another common application is to use a lentivirus to introduce a new gene into human or animal cells. For example, a model of mouse hemophilia is corrected by expressing wild-type platelet-factor VIII, the gene that is mutated in human hemophilia.[3] Lentiviral infection has advantages over other gene-therapy methods including high-efficiency infection of dividing and non-dividing cells, long-term stable expression of a transgene, and low immunogenicity. Lentiviruses have also been successfully used for transfection of diabetic mice with the gene encoding PDGF (platelet-derived growth factor),[4] a therapy being considered for use in humans. These treatments, like most current gene therapy experiments, show promise but are yet to be established as safe and effective in controlled human studies. Gammaretroviral and lentiviral vectors have so far been used in more than 300 clinical trials, addressing treatment options for various diseases.[5]

Notes[edit]

  1. ^ Gilbert, James R., and Flossie Wong-Staal. "HIV-2 and SIV Vector Systems." Lentiviral Vector Systems for Gene Transfer. Ed. Gary L. Buchschacher. Georgetown, TX: Eurekah.com, 2003. http://books.google.com/books?id=59FuGsgsI5wC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
  2. ^ shRNA – short hairpin RNA
  3. ^ Shi Q, Wilcox DA, Fahs SA, et al. (February 2007). "Lentivirus-mediated platelet-derived factor VIII gene therapy in murine haemophilia A". J. Thromb. Haemost. 5 (2): 352–61. doi:10.1111/j.1538-7836.2007.02346.x. PMID 17269937. 
  4. ^ Lee JA, Conejero JA, Mason JM, et al. (August 2005). "Lentiviral transfection with the PDGF-B gene improves diabetic wound healing". Plast. Reconstr. Surg. 116 (2): 532–8. doi:10.1097/01.prs.0000172892.78964.49. PMID 16079687. 
  5. ^ Kurth, R; Bannert, N, ed. (2010). Retroviruses: Molecular Biology, Genomics and Pathogenesis. Caister Academic Press. ISBN 978-1-904455-55-4. 

References[edit]

  • Ryan KJ, Ray CG, ed. (2004). Sherris Medical Microbiology: An Introduction to Infectious Diseases (4th ed.). New York: McGraw Hill. ISBN 0-8385-8529-9. 
  • Desport, M, ed. (2010). Lentiviruses and Macrophages: Molecular and Cellular Interactions. Caister Academic Press. ISBN 978-1-904455-60-8. 

Further reading[edit]

External links[edit]