List of device bit rates

From Wikipedia, the free encyclopedia
  (Redirected from List of device bandwidths)
Jump to: navigation, search

This is a list of device bit rates, or physical layer information rates, net bit rates, useful bit rates, peak bit rates or digital bandwidth capacity, at which digital interfaces of computer peripheral equipment and network devices can communicate over various kinds of buses and networks. The distinction can be arbitrary between a bus, (which is inside a box and usually relies on many parallel wires), and a communications network cable, (which is external, between boxes and rarely relies on more than four wires). Many device interfaces or protocols (e.g., SATA, USB, SCSI, PCI and a few variants of Ethernet) are used both inside many-device boxes, such as a PC, and one-device-boxes, such as a hard drive enclosure. Accordingly, this page lists both the internal ribbon and external communications cable standards together in one sortable table.

Factors limiting actual performance, criteria for real decisions[edit]

Most of the listed rates are theoretical maximum throughput measures; in practice, the actual effective throughput is almost inevitably lower in proportion to the load from other devices (network/bus contention), interframe gap, and other overhead in data link layer protocols etc. The maximum goodput (for example, the file transfer rate) may be even lower due to higher layer protocol overhead and data packet retransmissions caused by line noise or interference such as crosstalk, or lost packets in congested intermediate network nodes. All protocols lose something, and the more robust ones that deal resiliently with very many failure situations tend to lose more maximum throughput to get higher total long term rates.

Device interfaces where one bus transfers data via another will be limited to the throughput of the slowest interface, at best. For instance, SATA 6G controllers on one PCIe 5G channel will be limited to the 5G rate and have to employ more channels to get around this problem. Early implementations of new protocols very often have this kind of problem. The physical phenomena on which the device relies (such as spinning platters in a hard drive) will also impose limits; for instance, no spinning platter shipping in 2009 saturates SATA II (3 Gbit/s), so moving from this 3 Gbit/s interface to USB3 at 4.8 Gbit/s for one spinning drive will result in no increase in realized transfer rate.

Contention in a wireless or noisy spectrum, where the physical medium is entirely out of the control of those who specify the protocol, requires measures that also use up throughput. Wireless devices, BPL, and modems may produce a higher line rate or gross bit rate, due to error-correcting codes and other physical layer overhead. It is extremely common for throughput to be far less than half of theoretical maximum, though the more recent technologies (notably BPL) employ preemptive spectrum analysis to avoid this and so have much more potential to reach actual gigabit rates in practice than prior modems.

Another factor reducing throughput is deliberate policy decisions made by Internet service providers that are made for contractual, risk management, aggregation saturation, or marketing reasons. Examples are rate limiting, bandwidth throttling, and the assignment of IP addresses to groups. These practices tend to minimize the throughput available to every user, but maximize the number of users that can be supported on one backbone.

Furthermore, chips are often not available in order to implement the fastest rates. AMD, for instance, does not support the 32-bit HyperTransport interface on any CPU it has shipped as of the end of 2009. Additionally, WiMax service providers in the US typically support only up to 4 Mbit/s as of the end of 2009.

Choosing service providers or interfaces based on theoretical maxima is unwise, especially for commercial needs. A good example is large scale data centers, which should be more concerned with price per port to support the interface, wattage and heat considerations, and total cost of the solution. Because some protocols such as SCSI and Ethernet now operate many orders of magnitude faster than when originally deployed, scalability of the interface is one major factor, as it prevents costly shifts to technologies that are not backward compatible. Underscoring this is the fact that these shifts often happen involuntarily or by surprise, especially when a vendor abandons support for a proprietary system.


By convention, bus and network data rates are denoted either in bits per second (bit/s) or bytes per second (B/s). In general, parallel interfaces are quoted in B/s and serial in bit/s. The more commonly used is shown below in bold type.

On devices like modems, bytes may be more than 8 bits long because they may be individually padded out with additional start and stop bits; the figures below will reflect this. Where channels use line codes (such as Ethernet, Serial ATA and PCI Express), quoted rates are for the decoded signal.

The figures below are simplex data rates, which may conflict with the duplex rates vendors sometimes use in promotional materials. Where two values are listed, the first value is the downstream rate and the second value is the upstream rate.

All quoted figures are in metric decimal units, where:

  • 1 byte (B) = 8 bit
  • 1 kbit/s = 1000 bit/s
  • 1 Mbit/s = 1000000 bit/s
  • 1 Gbit/s = 1000000000 bit/s
  • 1 kB/s = 1000 byte/s
  • 1 MB/s = 1000000 byte/s
  • 1 GB/s = 1000000000 byte/s
  • 1 TB/s = 1000000000000 byte/s

Note that these aren't the traditional binary prefixes for memory size. These decimal prefixes have long been established in data communications. This occurred before 1998 when IEC and other organizations introduced new binary prefixes and attempted to standardize their use across all computing applications.


The figures below are grouped by network or bus type, then sorted within each group from lowest to highest bandwidth; gray shading indicates a lack of known implementations.

Time Signal Station to Radio Clock[edit]

Technology Max. rate (bit/s) Max. rate (characters/s) Year
IRIG and related 1 bit/s ~0.2 characters/s [1][2]

TTY/Teletypewriter or telecommunications device for the deaf (TDD)[edit]

Technology Max. rate (bit/s) Max. rate (characters/s) Year
TTY (V.18) 45.4545bit/s 6 characters/s[3]
TTY (V.18) 50bit/s 6.6 characters/s
NTSC Line 21 Closed Captioning 1kbit/s ~100 characters/s

Modems (narrowband and broadband)[edit]

The bytes column of this particular table shows a net data transfer rate after the protocol overhead has been removed.

(The other device tables show bit rate equivalents.)

Narrowband (POTS: 3.1 kHz channel)[edit]

Technology Rate (kbit/s) Rate (kbyte/s) Year
Morse code (skilled operator) 0.021kbit/s[4] 4 cps (~40 wpm)[5] 1844
Modem 110 baud (symbols / second) (Bell 101) 0.11kbit/s 0.010kB/s (~10 cps)[6] 1959
Modem 300 (300 baud) (Bell 103 or V.21) 0.3kbit/s 0.03kB/s (~30 cps)[6] 1962[7]
Modem 1200 (600 baud) (Bell 212A or V.22) 1.2kbit/s 0.12kB/s (~120 cps)[6] 1976
Modem 1200/75 (600 baud) (V.23) 1.2/0.075kbit/s 0.12/0.0075kB/s (~120 cps)[6]
Modem 2400 (600 baud) (V.22bis) 2.4kbit/s 0.3kB/s[6]
Modem 4800 (1600 baud) (V.27ter) 4.8kbit/s 0.6kB/s[6]
Modem 9600 (2400 baud) (V.32) 9.6kbit/s 1.2kB/s[6] 1989[7]
Modem 14.4 (2400 baud) (V.32bis) 14.4kbit/s 1.8kB/s[6] 1991[7]
Modem 28.8 (3200 baud) (V.34-1994) 28.8kbit/s 3.6kB/s[6] 1994
Modem 33.6 (3429 baud) (V.34-1996/98) 33.6kbit/s 4.2kB/s[6] 1996[8]
Modem 56k (8000/3429 baud) (V.90) 56.0/33.6kbit/s[9] 7/4.2kB/s 1998
Modem 56k (8000/8000 baud) (V.92) 56.0/48.0kbit/s[9] 7/6kB/s 2001
Modem data compression (variable) (V.92/V.44) 56.0320.0kbit/s[9] 740kB/s
ISP-side text/image compression (variable) 56.01000.0kbit/s 7125kB/s
ISDN Basic Rate Interface (single/dual channel) 64/128kbit/s[10] 8/16kB/s 1986[11]
IDSL (dual ISDN + 16 kbit/s data channels) 144kbit/s 18kB/s 2000[12]

Broadband (hundreds of kHz wide)[edit]

Technology Rate (kbit/s) Rate (kbyte/s) Year
HDSL ITU G.991.1 aka DS1 1544kbit/s 193kB/s 1998[13]
MSDSL 2000kbit/s 250kB/s
SDSL 2320kbit/s 290kB/s
SHDSL ITU G.991.2 5690kbit/s 711kB/s 2001
ADSL (G.lite) 1536/512kbit/s 192/64kB/s 1998
ADSL (G.dmt) 8192/1024kbit/s 1024/128kB/s 1999
ADSL2 12288/1440kbit/s 1536/180kB/s 2002
ADSL2+ 24576/3584kbit/s 3072/448kB/s 2003
DOCSIS v1.0[14] (Cable modem) 38000/9000kbit/s 4750/1125kB/s 1997
DOCSIS v2.0[15] (Cable modem) 38000/27000kbit/s 4750/3375kB/s 2001
VDSL ITU G.993.1 52000kbit/s 7000kB/s 2001
VDSL2 ITU G.993.2 100000kbit/s 12500kB/s 2006
DOCSIS v3.0[16] (Cable modem) 160000/120000kbit/s 20000/15000kB/s (~200,000,000 wpm) 2006
Uni-DSL 200000kbit/s 25000kB/s
BPON (G.983) fiber optic service 622000/155000kbit/s 77700/19300kB/s 2005[17]
EPON (802.3ah) fiber optic service 1000000/1000000kbit/s 125000/125000kB/s 2008
DOCSIS v3.1[18] (Cable modem) 10000000/150000kbit/s 1250000/18750kB/s 2015
GPON (G.984) fiber optic service 2488000/1244000kbit/s 311000/155500kB/s (~3 billion+ wpm) 2008[19]
10G-PON (G.987) fiber optic service 10000000/2500000kbit/s 1250000/312500kB/s (~12 billion+ wpm) 2012[20]

Mobile telephone interfaces[edit]

Technology Download rate (bit/s) Upload rate (bit/s) Download rate (byte/s) Upload rate (byte/s) Year
GSM CSD (2G) 14.4kbit/s[21] 14.4kbit/s 1.8kB/s 1.8kB/s
HSCSD 57.6kbit/s 14.4kbit/s 5.4kB/s 1.8kB/s
GPRS (2.5G) 57.6kbit/s 28.8kbit/s 7.2kB/s 3.6kB/s
WiDEN 100kbit/s 100kbit/s 12.5kB/s 12.5kB/s
CDMA2000 1×RTT 153kbit/s 153kbit/s 18kB/s 18kB/s
EDGE (2.75G) (type 1 MS) 236.8kbit/s 236.8kbit/s 29.6kB/s 29.6kB/s
UMTS 3G 384kbit/s 384kbit/s 48kB/s 48kB/s
EDGE (type 2 MS) 473.6kbit/s 473.6kbit/s 59.2kB/s 59.2kB/s
EDGE Evolution (type 1 MS) 1184kbit/s 474kbit/s 148kB/s 59kB/s
EDGE Evolution (type 2 MS) 1894kbit/s 947kbit/s 237kB/s 118kB/s
1×EV-DO rev. 0 2457kbit/s 153kbit/s 307.2kB/s 19kB/s
1×EV-DO rev. A 3.1Mbit/s 1.8Mbit/s 397kB/s 230kB/s
1×EV-DO rev. B 14.7Mbit/s 5.4Mbit/s 1837kB/s 675kB/s
HSPA (3.5G) 13.98Mbit/s 5.760Mbit/s 1706kB/s 720kB/s
4×EV-DO Enhancements (2×2 MIMO) 34.4Mbit/s 12.4Mbit/s 4.3MB/s 1.55MB/s
HSPA+ (2×2 MIMO) 42Mbit/s 11.5Mbit/s 5.25MB/s 1.437MB/s
15×EV-DO rev. B 73.5Mbit/s 27Mbit/s 9.2MB/s 3.375MB/s
UMB (2×2 MIMO) 140Mbit/s 34Mbit/s 17.5MB/s 4.250MB/s
LTE (2×2 MIMO) 173Mbit/s 58Mbit/s 21.625MB/s 7.25MB/s
UMB (4×4 MIMO) 280Mbit/s 68Mbit/s 35MB/s 8.5MB/s
EV-DO rev. C 280Mbit/s 75Mbit/s 35MB/s 9MB/s
LTE (4×4 MIMO) 326Mbit/s 86Mbit/s 40.750MB/s 10.750MB/s

Wide area networks[edit]

Technology Rate (bit/s) Rate (byte/s) Year
DS0 0.064Mbit/s 0.008MB/s
G.lite (aka ADSL Lite) 1.536/0.512Mbit/s 0.192/0.064MB/s
DS1/T1 (and ISDN Primary Rate Interface) 1.544Mbit/s 0.192MB/s
E1 (and ISDN Primary Rate Interface) 2.048Mbit/s 0.256MB/s
G.SHDSL 2.304Mbit/s 0.288MB/s
LR-VDSL2 (4 to 5 km [long-]range) (symmetry optional) 4Mbit/s 0.512MB/s
SDSL[22] 2.32Mbit/s 0.29MB/s
T2 6.312Mbit/s 0.789MB/s
ADSL[23] 8.0/1.024Mbit/s 1.0/0.128MB/s
E2 8.448Mbit/s 1.056MB/s
ADSL2 12/3.5Mbit/s 1.5/0.448MB/s
Satellite Internet[24] 16/1Mbit/s 2.0/0.128MB/s
ADSL2+ 24/3.5Mbit/s 3.0/0.448MB/s
E3 34.368Mbit/s 4.296MB/s
DOCSIS v1.0 (Cable modem)[14] 38/9Mbit/s 4.75/1.125MB/s
DOCSIS v2.0 (Cable modem)[15] 38/27Mbit/s 4.75/3.37MB/s
DS3/T3 ('45 Meg') 44.736Mbit/s 5.5925MB/s
STS-1/EC-1/OC-1/STM-0 51.84Mbit/s 6.48MB/s
VDSL (symmetry optional) 100Mbit/s 12.5MB/s
OC-3/STM-1 155.52Mbit/s 19.44MB/s
DOCSIS v3.0 (Cable modem)[16] 222.48/171.52Mbit/s 27.81 MB/s/21.44MB/s
VDSL2 (symmetry optional) 250Mbit/s 31.25MB/s
T4 274.176Mbit/s 34.272MB/s
T5 400.352Mbit/s 50.044MB/s
OC-9 466.56Mbit/s 58.32MB/s
OC-12/STM-4 622.08Mbit/s 77.76MB/s
OC-18 933.12Mbit/s 116.64MB/s
OC-24 1.244Gbit/s 155.5MB/s
OC-36 1.900Gbit/s 237.5MB/s
OC-48/STM-16 2.488Gbit/s 311.04MB/s
OC-96 4.976Gbit/s 622.08MB/s
OC-192/STM-64 9.953Gbit/s 1.244GB/s
10 Gigabit Ethernet WAN PHY 9.953Gbit/s 1.244GB/s
10 Gigabit Ethernet LAN PHY 10.000Gbit/s 1.25GB/s
OC-256 13.271Gbit/s 1.659GB/s
OC-768/STM-256 39.813Gbit/s 4.976GB/s
OC-1536/STM-512 79.626Gbit/s 9.953GB/s
OC-3072/STM-1024 159.252Gbit/s 19.907GB/s

Local area networks[edit]

Technology Rate (bit/s) Rate (byte/s) Year
LocalTalk 230kbit/s 28.8kB/s
Econet 800kbit/s 100kB/s 1981
Omninet 1Mbit/s 125kB/s
IBM PC Network 2Mbit/s 250kB/s 1985
ARCNET (Standard) 2.5Mbit/s 312.5kB/s 1977
Token Ring (Original) 4Mbit/s 500kB/s 1985
Ethernet (10BASE-T) 10Mbit/s 1.25MB/s 1980 (1985 IEEE Standard)
Token Ring (Later) 16Mbit/s 2MB/s 1989
ARCnet Plus 20Mbit/s 2.5MB/s 1992
TNCS 100Mbit/s 12.5MB/s 1993?
100VG 100Mbit/s 12.5MB/s 1995
Token Ring IEEE 802.5t 100Mbit/s 12.5MB/s
Fast Ethernet (100BASE-TX) 100Mbit/s 12.5MB/s 1995
FDDI 100Mbit/s 12.5MB/s
MoCA 1.0[25] 100Mbit/s 12.5MB/s
MoCA 1.1[25] 175Mbit/s 21.875MB/s
HomePlug AV 200Mbit/s 25MB/s 2005
FireWire (IEEE 1394) 400[26][27] 400Mbit/s 50MB/s 1995
HIPPI 800Mbit/s 100MB/s
IEEE 1901 1000Mbit/s 125MB/s 2010
Token Ring IEEE 802.5v 1Gbit/s 125MB/s 2001
Gigabit Ethernet (1000BASE-T) 1Gbit/s 125MB/s 1998
Reflective memory or RFM2 (1.25 µs latency) 2Gbit/s 235MB/s 1970
Myrinet 2000 2Gbit/s 250MB/s
Infiniband SDR 1×[28] 2Gbit/s 250MB/s
RapidIO Gen1 1x 2.5Gbit/s 312.5MB/s
Quadrics QsNetI 3.6Gbit/s 450MB/s
Infiniband DDR 1×[28] 4Gbit/s 500MB/s
RapidIO Gen2 1x 5Gbit/s 625MB/s
Infiniband QDR 1×[28] 8Gbit/s 1GB/s
Infiniband SDR 4×[28] 8Gbit/s 1GB/s
Quadrics QsNetII 8Gbit/s 1GB/s
RapidIO Gen1 4x 10Gbit/s 1.25GB/s
RapidIO Gen2 2x 10Gbit/s 1.25GB/s
10 Gigabit Ethernet (10GBASE-X) 10Gbit/s 1.25GB/s
Myri 10G 10Gbit/s 1.25GB/s
Infiniband FDR-10 1×[29] 10.31Gbit/s 1.29GB/s
Infiniband FDR 1×[29] 13.64Gbit/s 1.7GB/s
Infiniband DDR 4×[28] 16Gbit/s 2GB/s
RapidIO Gen2 4x 20Gbit/s 2.5GB/s
Scalable Coherent Interface (SCI) Dual Channel SCI, x8 PCIe 20Gbit/s 2.5GB/s
Infiniband SDR 12×[28] 24Gbit/s 3GB/s
Infiniband EDR 1×[29] 25Gbit/s 3.125GB/s
Infiniband QDR 4×[28] 32Gbit/s 4GB/s
RapidIO Gen2 8x 40Gbit/s 5GB/s
40 Gigabit Ethernet (40GBASE-X) 40Gbit/s 5GB/s
Infiniband FDR-10 4×[29] 41.25Gbit/s 5.16GB/s
Infiniband DDR 12×[28] 48Gbit/s 6GB/s
Infiniband FDR 4×[29] 54.54Gbit/s 6.82GB/s
RapidIO Gen2 16x 80Gbit/s 10GB/s
Infiniband QDR 12×[28] 96Gbit/s 12GB/s
Infiniband EDR 4×[29] 100Gbit/s 12.5GB/s
100 Gigabit Ethernet (100GBASE-X) 100Gbit/s 12.5GB/s
Infiniband FDR-10 12×[29] 123.75Gbit/s 15.47GB/s
Infiniband FDR 12×[29] 163.64Gbit/s 20.45GB/s
Infiniband EDR 12×[29] 300Gbit/s 37.5GB/s

Wireless networks[edit]

802.11 networks in infrastructure mode are half-duplex; all stations share the medium. In infrastructure or access point mode, all traffic has to pass through an Access Point (AP). Thus, two stations on the same access point that are communicating with each other must have each and every frame transmitted twice: from the sender to the access point, then from the access point to the receiver. This approximately halves the effective bandwidth.

802.11 networks in ad hoc mode are still half-duplex, but devices communicate directly rather than through an access point. In this mode all devices must be able to "see" each other, instead of only having to be able to "see" the access point.

Standard Rate (bit/s) Rate (byte/s) Year
Classic WaveLAN 2Mbit/s 250kB/s 1988
IEEE 802.11 2Mbit/s 250kB/s 1997
RONJA (full duplex) 10Mbit/s 1.25MB/s 2001
IEEE 802.11a 54Mbit/s 6.75MB/s 1999
IEEE 802.11b 11Mbit/s 1.375MB/s 1999
IEEE 802.11g 54Mbit/s 6.75MB/s 2003
IEEE 802.16 (WiMAX) 70Mbit/s 8.75MB/s 2004
IEEE 802.11g with Super G by Atheros 108Mbit/s 13.5MB/s 2003
IEEE 802.11g with 125 High Speed Mode by Broadcom 125Mbit/s 15.625MB/s 2003
IEEE 802.11g with Nitro by Conexant 140Mbit/s 17.5MB/s 2003
IEEE 802.11n 600Mbit/s 75MB/s 2009
IEEE 802.11ac (maximum theoretical speed) 6.8Gbit/s - 6.93Gbit/s 850MB/s - 866.25MB/s 2012
IEEE 802.11ad (maximum theoretical speed) 7.14Gbit/s - 7.2Gbit/s 892.5MB/s - 900MB/s 2011

Wireless personal area networks[edit]

Technology Rate (bit/s) Rate (byte/s) Year
ANT 20kbit/s 2.5kB/s
IrDA-Control 72kbit/s 9kB/s
IrDA-SIR 115.2kbit/s 14kB/s
802.15.4 (2.4 GHz) 250kbit/s 31.25kB/s
Bluetooth 1.1 1Mbit/s 125kB/s 2002
Bluetooth 2.0+EDR 3Mbit/s 375kB/s 2004
IrDA-FIR 4Mbit/s 500kB/s
IrDA-VFIR 16Mbit/s 2MB/s
Bluetooth 3.0 24Mbit/s 3MB/s 2009
Bluetooth 4.0 24Mbit/s 3MB/s 2010
IrDA-UFIR 96Mbit/s 12MB/s
WUSB-UWB 480Mbit/s 60MB/s
IrDA-Giga-IR 1024Mbit/s 128MB/s

Computer buses[edit]

Main buses[edit]

Technology Rate (bit/s) Rate (byte/s) Year
I²C 3.4Mbit/s 425kB/s 1992 (standardized)
Apple II series (incl. Apple IIGS) 8-bit/1 MHz 8Mbit/s 1MB/s,[30][31]
SS-50 Bus 8-bit/1(?) MHz 8Mbit/s 1MB/s
STD-80 8-bit/8 MHz 16Mbit/s 2MB/s
ISA 8-Bit/4.77 MHz 19.1Mbit/s 2.39MB/s 1981 (created)
STD-80 16-bit/8 MHz 32Mbit/s 4MB/s
Zorro II 16-bit/7.14 MHz[32] 42.4Mbit/s 5.3MB/s 1986
ISA 16-Bit/8.33 MHz 66.7Mbit/s 8.33MB/s 1984 (created)
Europe Card Bus 8-Bit/10 MHz 66.7Mbit/s 8.33MB/s 1977 (created)
S-100 bus 8-bit/10 MHz 80Mbit/s 10MB/s 1976 (published)
Serial Peripheral Interface Bus (Up to 100 MHz) 100Mbit/s 12.5MB/s
Low Pin Count 125Mbit/s 15.63MB/s [x]
STEbus 8-Bit/16 MHz 128Mbit/s 16MB/s 1987 (standardized)
C-Bus 16-bit/10 MHz 160Mbit/s 20MB/s[33]
HP Precision Bus 184Mbit/s 23MB/s
STD-32 32-bit/8 MHz 256Mbit/s 32MB/s[34]
NESA 32-bit/8 MHz 256Mbit/s 32MB/s[35]
EISA 8-16-32bit/8.33 MHz 266.56Mbit/s 33.32MB/s 1988
VME64 32-64bit 400Mbit/s 40MB/s
NuBus 10 MHz 400Mbit/s 40MB/s
DEC TURBOchannel 32-bit/12.5 MHz 400Mbit/s 50MB/s
MCA 16-32bit/10 MHz 660Mbit/s 66MB/s 1987
NuBus90 20 MHz 800Mbit/s 80MB/s
APbus 32-bit/25(?) MHz 800Mbit/s 100MB/s[36]
Sbus 32-bit/25 MHz 800Mbit/s 100MB/s 1989
DEC TURBOchannel 32-bit/25 MHz 800Mbit/s 100MB/s
Local Bus 98 32-bit/33 MHz 1056Mbit/s 132MB/s[37]
VESA Local Bus - VLB 32-bit/33 MHz 1067Mbit/s 133.33MB/s 1992
PCI 32-bit/33 MHz 1067Mbit/s 133.33MB/s 1993
HP GSC-1X 1136Mbit/s 142MB/s
Zorro III 32-bit/async (eq. 37.5 MHz)[38][39] 1200Mbit/s 150MB/s[40] 1990
VESA Local Bus - VLB 32-bit/40 MHz 1280Mbit/s 160MB/s 1992
Sbus 64-bit/25 MHz 1.6Gbit/s 200MB/s
PCI Express 1.0 (×1 link)[41] 2.5Gbit/s 250MB/s [z] 2004
HP GSC-2X 2.048Gbit/s 256MB/s
PCI 64-bit/33 MHz 2.133Gbit/s 266.7MB/s 1993
PCI 32-bit/66 MHz 2.133Gbit/s 266.7MB/s 1995
AGP 2.133Gbit/s 266.7MB/s 1997
RapidIO Gen1 1x 2.5Gbit/s 312.5MB/s
HIO bus 2.560Gbit/s 320MB/s
GIO64 64-bit/40 MHz 2.560Gbit/s 320MB/s
PCI Express 1.0 (×2 link)[41] 5Gbit/s 500MB/s [z] 2011
PCI Express 2.0 (×1 link)[42] 5Gbit/s 500MB/s [z] 2007
AGP 4.266Gbit/s 533.3MB/s 1997
PCI 64-bit/66 MHz 4.266Gbit/s 533.3MB/s
PCI-X DDR 16-bit 4.266Gbit/s 533.3MB/s
RapidIO Gen2 1x 5Gbit/s 625MB/s
PCI 64-bit/100 MHz 6.4Gbit/s 800MB/s
PCI Express 3.0 (×1 link)[43] 8Gbit/s 984.6MB/s [y] 2011
Unified Media Interface (UMI) (×4 link) 10Gbit/s 1GB/s [z] 2011
Direct Media Interface (DMI) (×4 link) 10Gbit/s 1GB/s [z] 2004
Enterprise Southbridge Interface (ESI) 8Gbit/s 1GB/s
PCI Express 1.0 (×4 link)[41] 10Gbit/s 1GB/s [z] 2004
AGP 8.533Gbit/s 1.067GB/s 1998
PCI-X 133 8.533Gbit/s 1.067GB/s
PCI-X QDR 16-bit 8.533Gbit/s 1.067GB/s
InfiniBand single 4×[28] 8Gbit/s 1GB/s
RapidIO Gen1 4x 10Gbit/s 1.25GB/s
RapidIO Gen2 2x 10Gbit/s 1.25GB/s
UPA 15.360Gbit/s 1.920GB/s
Unified Media Interface 2.0 (UMI 2.0) (×4 link) 20Gbit/s 2GB/s [z] 2012
Direct Media Interface 2.0 (DMI 2.0) (×4 link) 20Gbit/s 2GB/s [z] 2011
PCI Express 1.0 (×8 link)[41] 20Gbit/s 2GB/s [z] 2004
PCI Express 2.0 (×4 link)[42] 20Gbit/s 2GB/s [z] 2007
AGP 8x 17.066Gbit/s 2.133GB/s 2002
PCI-X DDR 17.066Gbit/s 2.133GB/s
RapidIO Gen2 4x 20Gbit/s 2.5GB/s
Sun JBus (200 MHz) 20.48Gbit/s 2.56GB/s 2003
HyperTransport (800 MHz, 16-pair) 25.6Gbit/s 3.2GB/s 2001
PCI Express 3.0 (×4 link)[43] 32Gbit/s 3.934GB/s [y] 2011
HyperTransport (1 GHz, 16-pair) 32Gbit/s 4GB/s
PCI Express 1.0 (×16 link)[41] 40Gbit/s 4GB/s [z] 2004
PCI Express 2.0 (×8 link)[42] 40Gbit/s 4GB/s [z] 2007
PCI-X QDR 34.133Gbit/s 4.266GB/s
AGP 8× 64-bit 34.133Gbit/s 4.266GB/s
RapidIO Gen2 8x 40Gbit/s 5GB/s
PCI Express 3.0 (×8 link)[43] 64Gbit/s 7.88GB/s [y] 2011
PCI Express 1.0 (×32 link)[41] 80Gbit/s 8GB/s [z] 2001
PCI Express 2.0 (×16 link)[42] 80Gbit/s 8GB/s [z] 2007
RapidIO Gen2 16x 80Gbit/s 10GB/s
PCI Express 3.0 (×16 link)[43] 128Gbit/s 15.75GB/s [y] 2011
PCI Express 2.0 (×32 link)[42] 160Gbit/s 16GB/s [z] 2007
QPI (4.80GT/s, 2.40 GHz) 153.6Gbit/s 19.2GB/s
HyperTransport 2.0 (1.4 GHz, 32-pair) 179.2Gbit/s 22.4GB/s 2004
QPI (5.86GT/s, 2.93 GHz) 187.52Gbit/s 23.44GB/s
QPI (6.40GT/s, 3.20 GHz) 204.8Gbit/s 25.6GB/s
QPI (7.2GT/s, 3.6 GHz) 230.4Gbit/s 28.8GB/s 2012
PCI Express 3.0 (×32 link)[43] 256Gbit/s 31.5GB/s [y] 2011
QPI (8.0GT/s, 4.0 GHz) 256.0Gbit/s 32.0GB/s 2012
QPI (9.6GT/s, 4.8 GHz) 307.2Gbit/s 38.4GB/s 2014
HyperTransport 3.0 (2.6 GHz, 32-pair) 332.8Gbit/s 41.6GB/s 2006
HyperTransport 3.1 (3.2 GHz, 32-pair) 409.6Gbit/s 51.2GB/s 2008

x LPC protocol includes high overhead. While the bruto data rate equals 33.3 million 4-bit-transfers per second (or 16.67MB/s), the fastest transfer, firmware read, results in 15.63MB/s. The next fastest bus cycle, 32-bit ISA-style DMA write, yields only 6.67MB/s. Other transfers may be as low as 2MB/s.[44]

y Uses 128b/130b encoding, meaning that about 1.54% of each transfer is used by the interface instead of carrying data between the hardware components at each end of the interface. For example, a single link PCIe 3.0 interface has an 8 Gbit/s transfer rate, yet its usable bandwidth is only about 7.88 Gbit/s.

z Uses 8b/10b encoding, meaning that 20% of each transfer is used by the interface instead of carrying data from between the hardware components at each end of the interface. For example, a single link PCIe 1.0 has a 2.5 Gbit/s transfer rate, yet its usable bandwidth is only 2 Gbit/s (250 MB/s).


Technology Rate (bit/s) Rate (byte/s) Year
PC Card 16-bit 255 ns byte mode 31.36Mbit/s 3.92MB/s
PC Card 16-bit 255 ns word mode 62.72Mbit/s 7.84MB/s
PC Card 16-bit 100 ns byte mode 80Mbit/s 10MB/s
PC Card 16-bit 100 ns word mode 160Mbit/s 20MB/s
PC Card 32-bit (CardBus) byte mode 267Mbit/s 33.33MB/s
ExpressCard 1.2 USB 2.0 mode 480Mbit/s 60MB/s
PC Card 32-bit (CardBus) word mode 533Mbit/s 66.66MB/s
PC Card 32-bit (CardBus) doubleword mode 1067Mbit/s 133.33MB/s
ExpressCard 1.2 PCI Express mode 2500Mbit/s 250MB/s
ExpressCard 2.0 USB 3.0 mode 4800Mbit/s 600MB/s
ExpressCard 2.0 PCI Express mode 5000Mbit/s 625MB/s


Technology Rate (bit/s) Rate (byte/s) Year
Teletype Model 33 paper tape (70 bit/s, 10 ASCII characters per second) 0.000070Mbit/s 0.000010MB/s 1963
TRS-80 Model 1 Level 1 BASIC cassette tape interface (250 bit/s) 0.00025Mbit/s 0.000032MB/s 1977
Apple 2 cassette tape interface (1500 bit/s) 0.0015Mbit/s 0.0002MB/s 1977
Single Density 8" FM Floppy Disk Controller (160 KB) 0.250Mbit/s 0.031MB/s 1973
Double Density 5.25" MFM Floppy Disk Controller (360 KB) 0.500Mbit/s 0.062MB/s 1978
High Density MFM Floppy Disk Controller (1.2 MB/1.44 MB) 1.0Mbit/s 0.124MB/s 1984
CD Controller (1×) 1.171Mbit/s 0.146MB/s
MFM hard disk 5Mbit/s 0.625MB/s
RLL hard disk 7.5Mbit/s 0.937MB/s
DVD Controller (1×) 11.1Mbit/s 1.32MB/s
ESDI 24Mbit/s 3MB/s
ATA PIO Mode 0 26.4Mbit/s 3.3MB/s
HD DVD Controller (1×) 36Mbit/s 4.5MB/s
Blu-ray Controller (1×) 36Mbit/s 4.5MB/s
SCSI (Narrow SCSI) (5 MHz)[45] 40Mbit/s 5MB/s
ATA PIO Mode 1 41.6Mbit/s 5.2MB/s
ATA PIO Mode 2 66.4Mbit/s 8.3MB/s
Fast SCSI (8 bits/10 MHz) 80Mbit/s 10MB/s
ATA PIO Mode 3 88.8Mbit/s 11.1MB/s
AoE over Fast Ethernet, per path 100Mbit/s 12.5MB/s
iSCSI over Fast Ethernet 100Mbit/s 12.5MB/s
ATA PIO Mode 4 133.3Mbit/s 16.7MB/s
Fast Wide SCSI (16 bits/10 MHz) 160Mbit/s 20MB/s
Ultra SCSI (Fast-20 SCSI) (8 bits/20 MHz) 160Mbit/s 20MB/s
Ultra DMA ATA 33 264Mbit/s 33MB/s
Ultra Wide SCSI (16 bits/20 MHz) 320Mbit/s 40MB/s
Ultra-2 SCSI 40 (Fast-40 SCSI) (8 bits/40 MHz) 320Mbit/s 40MB/s
Ultra DMA ATA 66 533.6Mbit/s 66.7MB/s
Blu-ray Controller (16×) 576Mbit/s 72MB/s
Ultra-2 wide SCSI (16 bits/40 MHz) 640Mbit/s 80MB/s
Serial Storage Architecture SSA 640Mbit/s 80MB/s
Ultra DMA ATA 100 800Mbit/s 100MB/s
Fibre Channel 1GFC (1.0625 GHz)[46] 850Mbit/s 106.25MB/s
AoE over gigabit Ethernet, per path 1000Mbit/s 125MB/s
iSCSI over gigabit Ethernet 1000Mbit/s 125MB/s
Ultra DMA ATA 133 1064Mbit/s 133MB/s
Ultra-3 SCSI (Ultra 160 SCSI; Fast-80 Wide SCSI) (16 bits/40 MHz DDR) 1280Mbit/s 160MB/s
SATA revision 1.0[47] 1500Mbit/s 150MB/s [a]
Fibre Channel 2GFC (2.125 GHz)[46] 1700Mbit/s 212.5MB/s
Ultra-320 SCSI (Ultra4 SCSI) (16 bits/80 MHz DDR) 2560Mbit/s 320MB/s
Serial Attached SCSI (SAS)[47] 3000Mbit/s 300MB/s [a]
SATA Revision 2.0[47] 3000Mbit/s 300MB/s [a]
Fibre Channel 4GFC (4.25 GHz)[46] 3400Mbit/s 425MB/s
Ultra-640 SCSI (16 bits/160 MHz DDR) 5120Mbit/s 640MB/s
Serial Attached SCSI (SAS) 2[47] 6000Mbit/s 600MB/s [a]
SATA Revision 3.0[47] 6000Mbit/s 600MB/s [a]
Fibre Channel 8GFC (8.50 GHz)[46] 6800Mbit/s 850MB/s
Fibre Channel 16GFC (14.025 GHz)[46] 13600Mbit/s 1700MB/s [b]
Serial Attached SCSI (SAS) 3[47] 12000Mbit/s 1200MB/s
AoE over 10GbE, per path 10000Mbit/s 1250MB/s
iSCSI over 10GbE 10000Mbit/s 1250MB/s
FCoE over 10GbE 10000Mbit/s 1250MB/s
SATA revision 3.2 - SATA Express 16000Mbit/s 2000MB/s
Serial Attached SCSI (SAS) 4 (prelim spec)[47] 24000Mbit/s 2400MB/s
iSCSI over InfiniBand 32000Mbit/s 4000MB/s
iSCSI over 100G Ethernet (hypothetical) 100000Mbit/s 12500MB/s
FCoE over 100G Ethernet (hypothetical) 100000Mbit/s

a Uses 8b/10b encoding b Uses 64b/66b encoding


Technology Rate (bit/s) Rate (byte/s) Year
CBM Bus[48][49] 2.7kbit/s 0.34kB/s 1981
Apple Desktop Bus 10.0kbit/s 1.25kB/s 1986
Serial MIDI 31.25kbit/s 3.9kB/s 1983
Serial EIA-232 max. 230.4kbit/s 28.8kB/s 1962
Serial DMX512A 250.0kbit/s 31.25kB/s 1998
Parallel (Centronics) 1Mbit/s 125kB/s 1970 (Standardised 1994)
Serial 16550 UART max. 1.5Mbit/s 187.5kB/s
USB 1.1 ("Low-Bandwidth") 1.536Mbit/s 192kB/s 1996
Serial UART max 2.7648Mbit/s 345.6kB/s
GPIB/HPIB (IEEE-488.1) IEEE-488 max. 8Mbit/s 1MB/s late 1960s (Standardised 1976)
Serial EIA-422 max. 10Mbit/s 1.25MB/s
USB 1.1 ("Full-Bandwidth") 12Mbit/s 1.5MB/s 1996
Parallel (Centronics) EPP 2 MHz 16Mbit/s 2MB/s 1992
Serial EIA-485 max. 35Mbit/s 4.375MB/s
GPIB/HPIB (IEEE-488.1-2003) IEEE-488 max. 64Mbit/s 8MB/s
FireWire (IEEE 1394) 100 98.304Mbit/s 12.288MB/s 1995
FireWire (IEEE 1394) 200 196.608Mbit/s 24.576MB/s 1995
FireWire (IEEE 1394) 400 393.216Mbit/s 49.152MB/s 1995
USB 2.0 ("Hi-Speed") 480Mbit/s 60MB/s 2000
FireWire (IEEE 1394b) 800[50] 786.432Mbit/s 98.304MB/s 2002
Fibre Channel 1 Gb SCSI 1062.5Mbit/s 100MB/s
FireWire (IEEE 1394b) 1600[50] 1.573Gbit/s 196.6MB/s 2007
Fibre Channel 2 Gb SCSI 2125Mbit/s 200MB/s
eSATA (SATA 300) 3Gbit/s 375MB/s 2004
CoaXPress Base (up and down bidirectional link) 3.125Gbit/s + 20.833Mbit/s 390MB/s 2009
FireWire (IEEE 1394b) 3200[50] 3145.7Mbit/s 393.216MB/s 2007
External PCI Express 2.0 ×1 4Gbit/s 500MB/s
Fibre Channel 4 Gb SCSI 4.25Gbit/s 531.25MB/s
USB 3.0 ("SuperSpeed") 5Gbit/s 625MB/s 2010
eSATA (SATA 600) 6Gbit/s 750MB/s 2011
CoaXPress full (up and down bidirectional link) 6.25Gbit/s + 20.833Mbit/s 781MB/s 2009
External PCI Express 2.0 ×2 8Gbit/s 1000MB/s
USB 3.1 ("SuperSpeed+") 10Gbit/s 1250MB/s 2013
Thunderbolt 10Gbit/s × 2 1250MB/s × 2 2011
External PCI Express 2.0 ×4 16Gbit/s 2000MB/s
Thunderbolt 2 20Gbit/s 2500MB/s 2013
External PCI Express 2.0 ×8 32Gbit/s 4000MB/s
Thunderbolt 3 40Gbit/s 5000MB/s 2015
External PCI Express 2.0 ×16 64Gbit/s 8000MB/s

MAC to PHY[edit]

Technology Rate (bit/s) Rate (byte/s) Year
MII (4 lanes) 100Mbit/s 12.5MB/s
RMII (2 lanes) 100Mbit/s 12.5MB/s
SMII (1 lane) 100Mbit/s 12.5MB/s
GMII (8 lanes) 1.0Gbit/s 125MB/s
RGMII (4 lanes) 1.0Gbit/s 125MB/s
SGMII (2 lanes) 1.25Gbit/s 125MB/s
RSGMII (2 lanes) 2.5Gbit/s 250MB/s
RSGMII-PLUS (2 lanes) 5.0Gbit/s 500MB/s
QSGMII (2 lanes) 5.0Gbit/s 500MB/s
XGMII (32 lanes) 10.0Gbit/s 1.25GB/s
XAUI (4 lanes) 10.0Gbit/s 1.25GB/s
XLGMII 40.0Gbit/s 5GB/s
CGMII 100.0Gbit/s 12.5GB/s 2008

PHY to XPDR[edit]

Technology Rate (bit/s) Rate (byte/s) Year
XSBI (16 lanes) 0.995Gbit/s 0.124GB/s

Dynamic random access memory[edit]

The table below shows values for PC memory module types. These modules usually combine multiple chips on one circuit board. SIMM modules connect to the computer via an 8 bit or 32 bit wide interface. DIMM modules connect to the computer via a 64 bit wide interface. Some other computer architectures use different modules with a different bus width.

FPM, EDO, SDR, and RDRAM memories were not commonly installed in a dual-channel configuration. DDR and DDR2 memory are usually installed in single or dual-channel configuration. DDR3 memory are installed in single, dual, tri, and quad-channel configurations. Bit rates of multi-channel configuration are slightly increased.

Module type Chip type Memory clock Bus speed Transfer rate (bit/s) Transfer rate (byte/s)
FPM DRAM 45 ns 22MHz 0.177GT/s 1.416Gbit/s 177MB/s
EDO DRAM 30 ns 33MHz 0.266GT/s 2.128Gbit/s 266MB/s
PC-66 SDR SDRAM 10/15 ns 66MHz 0.066GT/s 4.264Gbit/s 533MB/s
PC-100 SDR SDRAM 8 ns 100MHz 0.100GT/s 6.4Gbit/s 800MB/s
PC-133 SDR SDRAM 7/7.5 ns 133MHz 0.133GT/s 8.528Gbit/s 1.066GB/s
RIMM-1200 RDRAM PC-600 300MHz 0.600GT/s 9.6Gbit/s 1.2GB/s
RIMM-1400 RDRAM PC-700 350MHz 0.700GT/s 11.2Gbit/s 1.4GB/s
RIMM-1600 RDRAM PC-800 400MHz 0.800GT/s 12.8Gbit/s 1.6GB/s
PC-1600 DDR SDRAM DDR-200 100MHz 0.200GT/s 12.8Gbit/s 1.6GB/s
RIMM-2100 RDRAM PC-1066 533MHz 1.066GT/s 17.034Gbit/s 2.133GB/s
PC-2100 DDR SDRAM DDR-266 133MHz 0.266GT/s 17.034Gbit/s 2.133GB/s
PC-2700 DDR SDRAM DDR-333 166MHz 0.333GT/s 21.336Gbit/s 2.667GB/s
PC-3200 DDR SDRAM DDR-400 200MHz 0.400GT/s 25.6Gbit/s 3.2GB/s
PC2-3200 DDR2 SDRAM DDR2-400 100MHz 0.400GT/s 25.6Gbit/s 3.2GB/s
PC-3500 DDR SDRAM DDR-433 216MHz 0.433GT/s 27.728Gbit/s 3.466GB/s
PC-3700 DDR SDRAM DDR-466 233MHz 0.466GT/s 29.864Gbit/s 3.733GB/s
PC-4000 DDR SDRAM DDR-500 250MHz 0.500GT/s 32Gbit/s 4GB/s
PC-4200 DDR SDRAM DDR-533 266MHz 0.533GT/s 34.128Gbit/s 4.266GB/s
PC2-4200 DDR2 SDRAM DDR2-533 133MHz 0.533GT/s 34.128Gbit/s 4.266GB/s
PC-4400 DDR SDRAM DDR-550 275MHz 0.550GT/s 35.2Gbit/s 4.4GB/s
PC-4800 DDR SDRAM DDR-600 300MHz 0.600GT/s 38.4Gbit/s 4.8GB/s
PC2-5300 DDR2 SDRAM DDR2-667 167MHz 0.667GT/s 42.664Gbit/s 5.333GB/s
PC2-6000 DDR2 SDRAM DDR2-750 188MHz 0.750GT/s 48Gbit/s 6GB/s
PC2-6400 DDR2 SDRAM DDR2-800 200MHz 0.800GT/s 51.2Gbit/s 6.4GB/s
PC3-6400 DDR3 SDRAM DDR3-800 100MHz 0.800GT/s 51.2Gbit/s 6.4GB/s
PC2-7200 DDR2 SDRAM DDR2-900 225MHz 0.900GT/s 57.6Gbit/s 7.2GB/s
PC2-8000 DDR2 SDRAM DDR2-1000 250MHz 1GT/s 57.6Gbit/s 7.2GB/s
PC2-8500 DDR2 SDRAM DDR2-1066 267MHz 1.066GT/s 64Gbit/s 8GB/s
PC3-8500 DDR3 SDRAM DDR3-1066 133MHz 1.066GT/s 64Gbit/s 8GB/s
PC2-8800 DDR2 SDRAM DDR2-1100 275MHz 1.1GT/s 70.4Gbit/s 8.8GB/s
PC2-8888 DDR2 SDRAM DDR2-1100 278MHz 1.111GT/s 71.104Gbit/s 8.888GB/s
PC2-9136 DDR2 SDRAM DDR2-1142 286MHz 1.142GT/s 73.088Gbit/s 9.136GB/s
PC2-9200 DDR2 SDRAM DDR2-1150 288MHz 1.15GT/s 73.6Gbit/s 9.2GB/s
PC2-9600 DDR2 SDRAM DDR2-1200 300MHz 1.2GT/s 76.8Gbit/s 9.6GB/s
PC2-10000 DDR2 SDRAM DDR2-1250 313MHz 1.25GT/s 80Gbit/s 10GB/s
PC3-10600 DDR3 SDRAM DDR3-1333 167MHz 1.333GT/s 85.336Gbit/s 10.667GB/s
PC3-11000 DDR3 SDRAM DDR3-1375 172MHz 1.375GT/s 88Gbit/s 11GB/s
PC3-12800 DDR3 SDRAM DDR3-1600 200MHz 1.6GT/s 102.4Gbit/s 12.8GB/s
PC3-13000 DDR3 SDRAM DDR3-1625 203MHz 1.625GT/s 104Gbit/s 13GB/s
PC3-14400 DDR3 SDRAM DDR3-1800 225MHz 1.8GT/s 115.2Gbit/s 14.4GB/s
PC3-14900 DDR3 SDRAM DDR3-1866 233MHz 1.866GT/s 119.464Gbit/s 14.933GB/s
PC3-15000 DDR3 SDRAM DDR3-1866 233MHz 1.866GT/s 119.464Gbit/s 14.933GB/s
PC3-16000 DDR3 SDRAM DDR3-2000 250MHz 2GT/s 128Gbit/s 16GB/s
PC3-17000 DDR3 SDRAM DDR3-2133 266MHz 2.133GT/s 136.528Gbit/s 17.066GB/s
PC4-17000 DDR4 SDRAM DDR4-2133 266MHz 2.133GT/s 136.5Gbit/s 17GB/s[51]
PC3-17600 DDR3 SDRAM DDR3-2200 275MHz 2.2GT/s 140.8Gbit/s 17.6GB/s
PC3-19200 DDR3 SDRAM DDR3-2400 300MHz 2.4GT/s 153.6Gbit/s 19.2GB/s
PC3-21300 DDR3 SDRAM DDR3-2666 333MHz 2.666GT/s 170.4Gbit/s 21.3GB/s
PC3-24000 DDR3 SDRAM DDR3-3000 375MHz 3.0GT/s 192Gbit/s 24GB/s
PC4-25600 DDR4 SDRAM DDR4-3200 400MHz 3.2GT/s 204.8Gbit/s 25.6GB/s

Graphics processing units' RAM[edit]

RAM memory modules are also utilised by graphics processing units; however, memory modules for those differs somewhat, particularly with lower power requirements, and is specialised to serve GPUs: for example, the introduction of GDDR3, which was fundamentally based on DDR2. Every graphics memory chip is directly connected to the GPU (point-to-point). The total GPU memory bus width varies with the number of memory chips and the number of lanes per chip. For example, GDDR5 specifies either 16 or 32 lanes per "device" (chip). Over the years, bus widths ranged from 64-bit to 512-bit.[52] Because of this variability, graphics memory speeds are sometimes compared per pin. For direct comparison to the values for 64-bit modules shown above, video RAM is compared here in 64-lane lots, corresponding to two chips. In 2012, high-end GPUs use 8 or even 12 chips with 32 lanes each, for a total memory bus width of 256 or 384 bits. Combined with a transfer rate per pin of 5 GT/s or more, such cards can reach 240 GB/s or more.

RAM frequencies vary greatly. The values given below are examples for high-end cards.[53] Since many cards have more than one pair of chips, the total bandwidth is correspondingly higher. For example, high-end cards often have eight chips, so that the total bandwidth is four times the value given below.

Module type Chip type Memory clock Transfers/s Transfer rate (bit/s) Transfer rate (byte/s)
64 lanes DDR 350MHz 0.7GT/s 44.8Gbit/s 5.6GB/s
64 lanes DDR2 250MHz 1GT/s 64Gbit/s 8GB/s
64 lanes GDDR3 625MHz 2.5GT/s 159Gbit/s 19.9GB/s
64 lanes GDDR4 275MHz 2.2GT/s 140.8Gbit/s 17.6GB/s
64 lanes GDDR5 750MHz 6GT/s 384Gbit/s 48GB/s

Digital audio[edit]

Device Rate (bit/s) Rate (byte/s)
CD Audio (16-bit PCM) 1.411Mbit/s 176.4kB/s
I²S 2.250Mbit/s @ 24bit/48 kHz 0.281MB/s
AES/EBU 2.625Mbit/s @ 24-bit/48 kHz 0.328MB/s
S/PDIF 3.072Mbit/s 0.384MB/s
ADAT Lightpipe (Type I) 9.216Mbit/s 2.304MB/s
AC'97 12.288Mbit/s 1.536MB/s
HDMI 1.x 36.864Mbit/s 4.608MB/s
Intel High Definition Audio rev. 1.0[54] 48Mbit/s outbound; 24 Mbit/s inbound 6MB/s outbound ; 3 MB/s inbound
HDMI 2.0 49.152Mbit/s 6.144MB/s
MADI 100Mbit/s 12.5MB/s

Digital video interconnects[edit]

Data rates given are from the video source (e.g., video card) to receiving device (e.g., monitor) only. Out of band and reverse signaling channels are not included.

Device Rate (bit/s) Rate (byte/s)
HD-SDI (SMPTE 292M) 1.485Gbit/s 0.186GB/s
Camera Link Base (single) 24-bit 85 MHz 2.040Gbit/s 0.255GB/s
LVDS Display Interface[55] 2.80Gbit/s 0.35GB/s
3G-SDI (SMPTE 424M) 2.97Gbit/s 0.371GB/s
Single link DVI 4.95Gbit/s 0.619GB/s [a]
HDMI 1.0[56] 4.95Gbit/s 0.619GB/s [a]
Camera Link full (dual) 64-bit 85 MHz 5.44Gbit/s 0.680GB/s
DisplayPort 1.0 (4-lane Reduced Bit Rate)[57] 6.48Gbit/s 0.810GB/s [a]
Dual link DVI 9.90Gbit/s 1.238GB/s [a]
HDMI 1.3[58] 10.2Gbit/s 1.275GB/s [a]
Dual High-Speed LVDS Display Interface 10.5Gbit/s 1.312GB/s
DisplayPort 1.0 (4-lane High Bit Rate)[57] 10.8Gbit/s 1.35GB/s [a]
HDMI 2.0[59] 18.0Gbit/s 2.25GB/s [a]
DisplayPort 1.2 (4-lane High Bit Rate 2)[57] 21.6Gbit/s 2.7GB/s [a]
DisplayPort 1.3 (4-lane High Bit Rate 3) 32.4Gbit/s 4.05GB/s [a]

a Uses 8b/10b encoding for video data—effective data rate is 80% of the symbol rate

See also[edit]


  1. ^
  2. ^
  3. ^ TTY uses a Baudot code, not ASCII. This uses 5 bits per character instead of 8, plus one start and approx. 1.5 stop bits (7.5 total bits per character sent).
  4. ^ Morse can transport 26 alphabetic, 10 numeric and one interword gap plaintext symbols. Transmitting 37 different symbols requires 5.21 bits of information (25.21=37). A skilled operator encoding the benchmark "PARIS" plus an interword gap (equal to 31.26 bits) at 40 wpm is operating at an equivalence of 20.84 bit/s.
  5. ^ WPM, or Words Per Minute, is the number of times the word "PARIS" is transferred per minute. Strictly speaking the code is quinary, accounting inter-element, inter-letter, and inter-word gaps, yielding 50 binary elements (bits) per one word. Counting characters, including inter-word gaps, gives six characters per word or 240 characters per minute, and finally four characters per second.
  6. ^ a b c d e f g h i j All modems are wrongly assumed to be in serial operation with 1 start bit, 8 data bits, no parity, and 1 stop bit (2 stop bits for 110-baud modems). Therefore, currently modems are wrongly calculated with transmission of 10 bits per 8-bit byte (11 bits for 110-baud modems). Although the serial port is nearly always used to connect a modem and has equivalent data rates, the protocols, modulations and error correction differ completely.
  7. ^ a b c Modem Types and Timeline, Daxal Communications, 2003-12-16, retrieved 2009-04-16 
  8. ^
  9. ^ a b c 56K modems: V.90 and V.92 have just 5% overhead for the protocol signaling. The maximum capacity can only be achieved when the upstream (service provider) end of the connection is digital, i.e. a DS0 channel.
  10. ^ Note that effective aggregate bandwidth for an ISDN installation is typically higher than the rates shown for a single channel due to the use of multiple channels. A basic rate interface (BRI) provides two "B" channels and one "D" channel. Each B channel provides 64 kBit/s bandwidth and the "D" channel carries signaling (call setup) information. B channels can be bonded to provide a 128 kbit/s data rate. Primary rate interfaces (PRI) vary depending on whether the region uses E1 (Europe, world) or T1 (North America) bearers. In E1 regions, the PRI carries 30 B-channels and one D-channel; in T1 regions the PRI carries 23 B-channels and one D-channel. The D-channel has different bandwidth on the two interfaces.
  11. ^ Massey, David (2006-07-04), "Timeline of Telecommunications", Telephone Tribute, retrieved 2009-04-16 
  12. ^
  13. ^
  14. ^ a b DOCSIS 1.0 includes technology which first became available around 1995–1996, and has since become very widely deployed. DOCSIS 1.1 introduces some security improvements and Quality of Service (QoS).
  15. ^ a b DOCSIS 2.0 specifications provide increased upstream throughput for symmetric services.
  16. ^ a b DOCSIS 3.0 includes support for channel bonding and IPv6.
  17. ^
  18. ^ DOCSIS 3.1 is currently in development by the Cablelabs Consortium
  19. ^
  20. ^ [1]
  21. ^ Most operators only support up to 9600bit/s
  22. ^ SDSL is available in various speeds.
  23. ^ ADSL connections will vary in throughput from 64 kbit/s to several Mbit/s depending on configuration. Most are commonly below 2 Mbit/s. Some ADSL and SDSL connections have a higher digital bandwidth than T1 but their rate is not guaranteed, and will drop when the system gets overloaded, whereas the T1 type connections are usually guaranteed and have no contention ratios.
  24. ^ Satellite internet may have a high bandwidth but also has a high latency due to the distance between the modem, satellite and hub. One-way satellite connections exist where all the downstream traffic is handled by satellite and the upstream traffic by land-based connections such as 56K modems and ISDN.
  25. ^ a b "MoCA 1.1 improves throughput" over coaxial cable to 175 Mbits/s versus the 100 Mbits/s provided by the MoCA 1.0 specification.
  26. ^ FireWire natively supports TCP/IP, and is often used at an alternative to Ethernet when connecting 2 nodes.
  27. ^ Data rate comparison between FW and Giganet shows that FW's lower overhead has nearly the same throughput as Giganet.
  28. ^ a b c d e f g h i j InfiniBand SDR, DDR and QDR use an 8b/10b encoding scheme.
  29. ^ a b c d e f g h i InfiniBand FDR-10, FDR and EDR use a 64b/66b encoding scheme.
  30. ^ Mac History
  31. ^ VAW: Apple IIgs Specs
  32. ^ The Zorro II bus use 4 clocks per 16-Bit of data transferred. See the Zorro III technical specification for more information.
  33. ^ Japan wikipedia article, Bus used in early NEC PC-9800 series and compatible systems
  34. ^ STD 32 Bus Specification and Designer's Guide
  35. ^ Japan wikipedia article, Bus used in later NEC PC-9800 series and compatible systems
  36. ^ Local Area Networks Newsletter by Paul Polishuk, September 1992, Page 7 (APbus used in Sony NeWS and NEC UP4800 workstations and NEC EWS4800 servers after VMEbus and before switch to PCI)
  37. ^ Japan wikipedia article, Bus used in NEC PC-9821 series
  38. ^ Dave Haynie, designer of the Zorro III bus, claims in this posting that the theoretical max of the Zorro III bus can be derived by the timing information given in ‘’chapter 5’’ of the Zorro III technical specification.
  39. ^ Dave Haynie, designer of the Zorro III bus, states in this posting that Zorro III is an asynchronous bus and therefore does not have a classical MHz rating. A maximum theoretical MHz value may be derived by examining timing constraints detailed in the Zorro III technical specification, which should yield about 37.5 MHz. No existing implementation performs to this level.
  40. ^ Dave Haynie, designer of the Zorro III bus, claims in this posting that Zorro III has a max burst rate of 150 MB/s.
  41. ^ a b c d e f Note that PCI Express 1.0/2.0 lanes use an 8b/10b encoding scheme.
  42. ^ a b c d e PCIe 2.0 effectively doubles the bus standard's bandwidth from 2.5 GT/s to 5 GT/s
  43. ^ a b c d e PCIe 3.0 increases the bandwidth from 5 GT/s to 8 GT/s and switches to 128b-130b encoding
  44. ^ Intel LPC Interface Specification 1.1
  45. ^ SCSI-1, SCSI-2 and SCSI-3 are signaling protocols and do not explicitly refer to a specific rate. Narrow SCSI exists using SCSI-1 and SCSI-2. Higher rates use SCSI-2 or later.
  46. ^ a b c d e Fibre Channel 1GFC, 2GFC, 4GFC use an 8b/10b encoding scheme. Fibre Channel 10GFC, which uses a 64B/66B encoding scheme, is not compatible with 1GFC, 2GFC and 4GFC, and is used only to interconnect switches.
  47. ^ a b c d e f g SATA and SAS use an 8b/10b encoding scheme.
  48. ^ proprietary serial version of IEEE-488 by Commodore International
  49. ^
  50. ^ a b c FireWire (IEEE 1394b) uses an 8b/10b encoding scheme.
  51. ^ Scott Mueller. Upgrading and Repairing PCs. Que Publishing. Mar 7, 2013. Table 6.11: JEDEC Standard DDR4 Module (284-PIN DIMM) Speeds and Transfer Rate
  52. ^ Comparison of AMD graphics processing units
  53. ^ Comparison of Nvidia graphics processing units
  54. ^ High Definition Audio Specification, Revision 1.0a, 2010
  55. ^, Panel display interfaces and bandwidth: From TTL, LVDS, TDMS to DisplayPort
  56. ^
  57. ^ a b c Displayport Technical Overview, May 2010
  58. ^
  59. ^

External links[edit]