Lystrosaurus

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Lystrosaurus
Temporal range: Late PermianMiddle Triassic, 255–241Ma
Lystrosaurus murrayi.jpg
Lystrosaurus murrayi skeleton at the Muséum national d'histoire naturelle in Paris, France.
Scientific classification e
Kingdom: Animalia
Phylum: Chordata
Clade: Synapsida
Order: Therapsida
Infraorder: Dicynodontia
Family: Lystrosauridae
Genus: Lystrosaurus
Cope, 1870
Species
  • L. murrayi (Huxley, 1859) (type)
  • L. declivus (Owen, 1860)
  • L. curvatus (Owen, 1876)
  • L. maccaigi Seeley, 1898
  • L. georgi Kalandadze, 1975
  • Lystrosaurus amphibius[1]
  • Lystrosaurus bothai[1]
  • Lystrosaurus breyeri[1]
  • Lystrosaurus broomi[1]
  • Lystrosaurus hedini[1]
  • Lystrosaurus jeppei[1]
  • Lystrosaurus jorisseni[1]
  • Lystrosaurus latifrons[1]
  • Lystrosaurus primitivus[1]
  • Lystrosaurus putterilli[1]
  • Lystrosaurus rajurkari[1]
  • Lystrosaurus robustus[1]
  • Lystrosaurus rubidgei[1]
  • Lystrosaurus theileri[1]
  • Lystrosaurus wageri[1]
  • Lystrosaurus wagneri[1]
  • Lystrosaurus weidenreichi[1]
  • Lystrosaurus youngi[1]

Lystrosaurus (/ˌlɪstrəˈsɔrəs/; "shovel lizard") is a genus of Late Permian and Middle Triassic Period dicynodont therapsids, which lived around 250 million years ago in what is now Antarctica, India, and South Africa. Four to six species are currently recognized, although from the 1930s to 1970s the number of species was thought to be much higher.

Being a dicynodont, Lystrosaurus had only two teeth, a pair of tusk-like canines, and is thought to have had a horny beak that was used for biting off pieces of vegetation. Lystrosaurus was a heavily built, herbivorous animal, approximately the size of a pig. The structure of its shoulders and hip joints suggest that Lystrosaurus moved with a semi-sprawling gait. The forelimbs were even more robust than the hindlimbs, and the animal is thought to have been a powerful digger that nested in burrows.

Lystrosaurus was by far the most common terrestrial vertebrate of the Early Triassic, accounting for as many as 95% of the total individuals in some fossil beds.[citation needed] It has often been suggested that it had anatomical features that enabled it to adapt better than most animals to the atmospheric conditions that were created by the Permian–Triassic extinction event and which persisted through the Early Triassic—low concentrations of oxygen and high concentrations of carbon dioxide.[citation needed] However, recent research suggests that these features were no more pronounced in Lystrosaurus than in genera that perished in the extinction or in genera that survived but were much less abundant than Lystrosaurus.[citation needed]

Description[edit]

Size of Lystrosaurus murrayi relative to a human.

Lystrosaurus was a dicynodont therapsid, typically about 3 feet (0.9 m) long and weighing about 100 to 200 pounds (50 to 90 kg).[2] One specimen unearthed in Karoo measured 2.5 meters long.[3] Unlike other therapsids, dicynodonts had very short snouts and no teeth except for the tusk-like upper canines. Dicynodonts are generally thought to have had horny beaks like those of turtles, for shearing off pieces of vegetation which were then ground on a horny secondary palate when the mouth was closed. The jaw joint was weak and moved backwards and forwards with a shearing action, instead of the more common sideways or up and down movements. It is thought that the jaw muscles were attached unusually far forward on the skull and took up a lot of space on the top and back of the skull. As a result the eyes were set high and well forward on the skull, and the face was short.[4]

Features of the skeleton indicate that Lystrosaurus moved with a semi-sprawling gait. The lower rear corner of the scapula (shoulder blade) was strongly ossified (built of strong bone), which suggests that movement of the scapula contributed to the stride length of the forelimbs and reduced the sideways flexing of the body.[5] The five sacral vertebrae were massive but not fused to each other and to the pelvis, making the back more rigid and reducing sideways flexing while the animal was walking. Therapsids with fewer than five sacral vertebrae are thought to have had sprawling limbs, like those of modern lizards.[5] In dinosaurs and mammals, which have erect limbs, the sacral vertebrae are fused to each other and to the pelvis.[6] A buttress above each acetabulum (hip socket) is thought to have prevented dislocation of the femur (thigh bone) while Lystrosaurus was walking with a semi-sprawling gait.[5] The forelimbs of Lystrosaurus were massive,[5] and Lystrosaurus is thought to have been a powerful burrower.[7]

Distribution and species[edit]

A fossil skeleton on display at a museum. It is brown in color and the eye socket is facing right.
Fossil specimen, Staatliches Museum für Naturkunde Stuttgart

Lystrosaurus fossils have been found in many Late Permian and Triassic terrestrial bone beds, most abundantly in Africa, and to a lesser extent in parts of what are now India, China, Mongolia, European Russia, and Antarctica (which was not over the South Pole at the time).[5]

Species found in Africa[edit]

Lystrosaurus murrayi

Most Lystrosaurus fossils have been found in the Balfour and Katberg Formations of the Karoo basin in South Africa; these specimens offer the best prospects of identifying species because they are the most numerous and have been studied for the longest time. As so often with fossils, there is debate in the paleontological community as to exactly how many species have been found in the Karoo.[7] Studies from the 1930s to 1970s suggested a large number (23 in one case).[7] However, by the 1980s and 1990s, only six species were recognized in the Karoo: L. curvatus, L. platyceps, L. oviceps, L. maccaigi, L. murrayi, and L. declivis. A study in 2011 reduced that number to four, treating the fossils previously labeled as L. platyceps and L. oviceps as members of L. curvatus.[8]

L. maccaigi is the largest and apparently most specialized species, while L. curvatus was the least specialized. A Lystrosaurus-like fossil, Kwazulusaurus shakai, has also been found in South Africa. Although not assigned to the same genus, K. shakai is very similar to L. curvatus. Some paleontologists have therefore proposed that K. shakai was possibly an ancestor of or closely related to the ancestors of L. curvatus, while L. maccaigi arose from a different lineage.[7] L. maccaigi is found only in sediments from the Permian period, and apparently did not survive the Permian–Triassic extinction event. Its specialized features and sudden appearance in the fossil record without an obvious ancestor may indicate that it immigrated into the Karoo from an area in which Late Permian sediments have not been found.[7]

L. curvatus is found in a relatively narrow band of sediments from shortly before and after the extinction, and can be used as an approximate marker for the boundary between the Permian and Triassic periods. A skull identified as L. curvatus has been found in late Permian sediments from Zambia. For many years it had been thought that there were no Permian specimens of L. curvatus in the Karoo, which led to suggestions that L. curvatus immigrated from Zambia into the Karoo. However, a re-examination of Permian specimens in the Karoo has identified some as L. curvatus, and there is no need to assume immigration.[7]

L. murrayi and L. declivis are found only in Triassic sediments.[7]

Other species[edit]

A pink/grey four-footed animal. The head is facing slightly toward you, and has two big teeth. It is covered in fur and has sharp claws.
Lystrosaurus georgi

Lystrosaurus georgi fossils have been found in the Earliest Triassic sediments of the Moscow Basin in Russia. It was probably closely related to the African Lystrosaurus curvatus,[5] which is regarded as one of the least specialized species and has been found in very Late Permian and very Early Triassic sediments.[7]

History[edit]

 Full body view of the skeleton of a four footed animal.
Lystrosaurus skeletal diagram

Dr. Elias Root Beadle, a Philadelphia missionary and avid fossil collector, discovered the first Lystrosaurus skull. Beadle wrote to the eminent paleontologist Othniel Charles Marsh, but received no reply. Marsh's rival, Edward Drinker Cope, was very interested in seeing the find, and described and named Lystrosaurus in the Proceedings of the American Philosophical Society in 1870.[9] Its name is derived from the Ancient Greek words listron "shovel" and sauros "lizard".[10] Marsh belatedly purchased the skull in May 1871, although his interest in an already-described specimen was unclear; he may have wanted to carefully scrutinize Cope's description and illustration.[9]

Plate tectonics[edit]

Map showing where in the world fossils of this animal were found. It indicates that the animal's range extended to South Africa, India, and Antarctica. Other animals include a land reptile, swimming reptile, and a plant, and show that the continents were all joined together once.
Geographical distribution of Lystrosaurus (    ) and contemporary fossils in Gondwana.

The discovery of Lystrosaurus fossils at Coalsack Bluff in the Transantarctic Mountains by Edwin H. Colbert and his team in 1969–70 helped confirm the theory of plate tectonics and convince the last of the doubters, since Lystrosaurus had already been found in the lower Triassic of southern Africa as well as in India and China.[11]

Paleoecology[edit]

Dominance of the Early Triassic[edit]

Lystrosaurus is notable for dominating southern Pangaea during the Early Triassic for millions of years. At least one unidentified species of this genus survived the end-Permian mass extinction and, in the absence of predators and of herbivorous competitors, went on to thrive and re-radiate into a number of species within the genus,[12] becoming the most common group of terrestrial vertebrates during the Early Triassic; for a while 95% of land vertebrates were Lystrosaurus.[12][13] This is the only time that a single species or genus of land animal dominated the Earth to such a degree.[14] A few other Permian therapsid genera also survived the mass extinction and appear in Triassic rocks—the therocephalians Tetracynodon, Moschorhinus and Ictidosuchoides—but do not appear to have been abundant in the Triassic;[7] complete ecological recovery took 30 million years, spanning the Early and Middle Triassic.[15]

Several attempts have been made to explain why Lystrosaurus survived the Permian–Triassic extinction event, the "mother of all mass extinctions",[16] and why it dominated Early Triassic fauna to such an unprecedented extent:

A yellow four-footed animal. Its mouth is closed but contains a horny beak and tusks protruding. It is colored light green/dark yellow and is walking with its legs spread apart.
Lystrosaurus murrayi
  • One of the more recent theories is that the Permian–Triassic extinction event reduced the atmosphere's oxygen content and increased its carbon dioxide content, so that many terrestrial species died out because they found breathing too difficult.[13] It has therefore been suggested that Lystrosaurus survived and became dominant because its burrowing life-style made it able to cope with an atmosphere of "stale air", and that specific features of its anatomy were part of this adaptation: a barrel chest that accommodated large lungs, short internal nostrils that facilitated rapid breathing, and high neural spines (projections on the dorsal side of the vertebrae) that gave greater leverage to the muscles that expanded and contracted its chest. However, there are weaknesses in all these points: the chest of Lystrosaurus was not significantly larger in proportion to its size than in other dicynodonts that became extinct; although Triassic dicynodonts appear to have had longer neural spines than their Permian counterparts, this feature may be related to posture, locomotion or even body size rather than respiratory efficiency; L. murrayi and L. declivis are much more abundant than other Early Triassic burrowers such as Procolophon or Thrinaxodon.[7]
  • The suggestion that Lystrosaurus was helped to survive and dominate by being semi-aquatic has a similar weakness: although amphibians become more abundant in the Karoo's Triassic sediments, they were much less numerous than L. murrayi and L. declivis.[7]
  • The most specialized and the largest animals are at higher risk in mass extinctions; this may explain why the unspecialized L. curvatus survived while the larger and more specialized L. maccaigi perished along with all the other large Permian herbivores and carnivores.[7] Although Lystrosaurus generally looks adapted to feed on plants similar to Dicroidium, which dominated the Early Triassic, the larger size of L. maccaigi may have forced it to rely on the larger members of the Glossopteris flora, which did not survive the end-Permian extinction.[7]
  • Only the 1.5 metres (4.9 ft)–long therocephalian Moschorhinus and the large archosauriform Proterosuchus appear large enough to have preyed on the Triassic Lystrosaurus species, and this shortage of predators may have been responsible for a Lystrosaurus population boom in the Early Triassic.[7]
  • Perhaps the survival of Lystrosaurus was simply a matter of luck.[12]

In popular culture[edit]

Lystrosaurus references in popular culture include:

  • BBC 2002 documentary The Day The Earth Nearly Died, a program which discuss the Permian extinction. In the program, the narrator says that Lystrosaurus was one of the therapsids which survived the extinction, and that it was the ancestor to all mammals, even humans. This is not correct, as paleontologists do not regard dicynodonta as ancestral to mammals.
  • Impossible Pictures production Walking with Monsters. Here, it was shown evolving from the little dicynodont Diictodon, even though both species lived at the same time though this may be a Triassic species of Lystrosaurus as most species died out in the Permian extinction. The program shows evolution of other creatures of the same time period.
  • Animal Armageddon, 5th episode, "explaining" that the different Lystrosaurus species had interbred with each other to adapt better and to survive during the transition from Permian to Triassic.
  • Lystrosaurus appeared in the Rite of Spring segment in the 1940 animated film Fantasia, where it is shown to dig out clams along with the Plateosaurus and it was one of the animals led by the Stegosaurus.

See also[edit]

Notes[edit]

  1. ^ a b c d e f g h i j k l m n o p q r The Paleobiology Database
  2. ^ "Lystrosaurus". Retrieved 2008-08-07. 
  3. ^ http://bcrc.bio.umass.edu/courses/fall2007/biol/biol270h/3-Discussions/12-Mass_Extinctions/12b-Permo-Triassic/12b-4_P-T_Synapsid_Extinction.pdf
  4. ^ Cowen, R. (2000). The History of Life (3rd ed.). Blackwell Scientific. pp. 167–68. ISBN 0-632-04444-6. 
  5. ^ a b c d e f Surkov, M.V., Kalandadze, N.N., and Benton, M.J. (June 2005). "Lystrosaurus georgi, a dicynodont from the Lower Triassic of Russia" (PDF). Journal of Vertebrate Paleontology 25 (2): 402–413. doi:10.1671/0272-4634(2005)025[0402:LGADFT]2.0.CO;2. ISSN 0272-4634. 
  6. ^ Benton, Michael J. (2004). "Origin and relationships of Dinosauria". In Weishampel, David B.; Dodson, Peter; and Osmólska, Halszka (eds.). The Dinosauria (2nd ed.). Berkeley: University of California Press. pp. 7–19. ISBN 0-520-24209-2. 
  7. ^ a b c d e f g h i j k l m n Botha, J., and Smith, R.M.H. (2005). "Lystrosaurus species composition across the Permo–Triassic boundary in the Karoo Basin of South Africa". Lethaia 40 (2): 125–137. doi:10.1111/j.1502-3931.2007.00011.x.  Full version online at "Lystrosaurus species composition across the Permo–Triassic boundary in the Karoo Basin of South Africa" (PDF). Retrieved 2008-07-02. 
  8. ^ Grine, F.E., Forster, C.A., Cluver, M.A. & Georgi, J.A. (2006). "Cranial variability, ontogeny and taxonomy of Lystrosaurus from the Karoo Basin of South Africa". Amniote paleobiology. Perspectives on the Evolution of Mammals, Birds, and Reptiles,. University of Chicago Press. pp. 432–503. 
  9. ^ a b Wallace, David Rains (2000). The Bonehunters' Revenge: Dinosaurs, Greed, and the Greatest Scientific Feud of the Gilded Age. Houghton Mifflin Harcourt. pp. 44–45. ISBN 0-618-08240-9. 
  10. ^ Liddell, Henry George and Robert Scott (1980). A Greek-English Lexicon (Abridged Edition). United Kingdom: Oxford University Press. ISBN 0-19-910207-4. 
  11. ^ Naomi Lubick, Investigating the Antarctic, Geotimes, 2005.
  12. ^ a b c Michael J. Benton (2006). When Life Nearly Died. The Greatest Mass Extinction of All Time. London: Thames & Hudson. ISBN 0-500-28573-X. 
  13. ^ a b The Consolations of Extinction: includes section on Lystrosaurus and end-Permian extinction
  14. ^ BBC: Life Before Dinosaurs
  15. ^ Sahney, S. and Benton, M.J. (2008). "Recovery from the most profound mass extinction of all time" (PDF). Proceedings of the Royal Society: Biological 275 (1636): 759–65. doi:10.1098/rspb.2007.1370. PMC 2596898. PMID 18198148. 
  16. ^ Erwin DH (1993). The great Paleozoic crisis; Life and death in the Permian. Columbia University Press. ISBN 0-231-07467-0. 

External links[edit]