From Wikipedia, the free encyclopedia
Jump to: navigation, search
Mitogen-activated protein kinase 3
Available structures
PDB Ortholog search: PDBe, RCSB
Symbols MAPK3 ; ERK-1; ERK1; ERT2; HS44KDAP; HUMKER1A; P44ERK1; P44MAPK; PRKM3; p44-ERK1; p44-MAPK
External IDs OMIM601795 MGI1346859 HomoloGene55682 ChEMBL: 3385 GeneCards: MAPK3 Gene
EC number
RNA expression pattern
PBB GE MAPK3 212046 x at tn.png
More reference expression data
Species Human Mouse
Entrez 5595 26417
Ensembl ENSG00000102882 ENSMUSG00000063065
UniProt P27361 Q63844
RefSeq (mRNA) NM_001040056 NM_011952
RefSeq (protein) NP_001035145 NP_036082
Location (UCSC) Chr 16:
30.13 – 30.13 Mb
Chr 7:
126.76 – 126.77 Mb
PubMed search [1] [2]

Mitogen-activated protein kinase 3 is an enzyme that in humans is encoded by the MAPK3 gene.[1]

The protein encoded by this gene is a member of the MAP kinase family. MAP kinases, also known as extracellular signal-regulated kinases (ERKs), act in a signaling cascade that regulates various cellular processes such as proliferation, differentiation, and cell cycle progression in response to a variety of extracellular signals. This kinase is activated by upstream kinases, resulting in its translocation to the nucleus where it phosphorylates nuclear targets. Alternatively spliced transcript variants encoding different protein isoforms have been described.[2]


MAPK3 has been shown to interact with PTPN7,[3][4][5] SPIB,[6] GTF2I,[7] DUSP3,[8] HDAC4,[9] RPS6KA2,[10][11] MAP2K1,[12][13][14][15][16] DUSP6[17] and MAP2K2.[12][13][16]

It has been suggested that MAPK3, along with the gene IRAK1, is turned off by two microRNAs that were activated after the influenza A virus had been made to infect human lung cells.[18]


  1. ^ Garcia F, Zalba G, Paez G, Encio I, de Miguel C (April 1999). "Molecular cloning and characterization of the human p44 mitogen-activated protein kinase gene". Genomics 50 (1): 69–78. doi:10.1006/geno.1998.5315. PMID 9628824. 
  2. ^ "Entrez Gene: MAPK3 mitogen-activated protein kinase 3". 
  3. ^ Pettiford, S M; Herbst R (February 2000). "The MAP-kinase ERK2 is a specific substrate of the protein tyrosine phosphatase HePTP". Oncogene (ENGLAND) 19 (7): 858–69. doi:10.1038/sj.onc.1203408. ISSN 0950-9232. PMID 10702794. 
  4. ^ Saxena, M; Williams S; Taskén K; Mustelin T (September 1999). "Crosstalk between cAMP-dependent kinase and MAP kinase through a protein tyrosine phosphatase". Nat. Cell Biol. (ENGLAND) 1 (5): 305–11. doi:10.1038/13024. ISSN 1465-7392. PMID 10559944. 
  5. ^ Saxena, M; Williams S; Brockdorff J; Gilman J; Mustelin T (April 1999). "Inhibition of T cell signaling by mitogen-activated protein kinase-targeted hematopoietic tyrosine phosphatase (HePTP)". J. Biol. Chem. (UNITED STATES) 274 (17): 11693–700. doi:10.1074/jbc.274.17.11693. ISSN 0021-9258. PMID 10206983. 
  6. ^ Mao, C; Ray-Gallet D; Tavitian A; Moreau-Gachelin F (February 1996). "Differential phosphorylations of Spi-B and Spi-1 transcription factors". Oncogene (ENGLAND) 12 (4): 863–73. ISSN 0950-9232. PMID 8632909. 
  7. ^ Kim, D W; Cochran B H (February 2000). "Extracellular signal-regulated kinase binds to TFII-I and regulates its activation of the c-fos promoter". Mol. Cell. Biol. (UNITED STATES) 20 (4): 1140–8. doi:10.1128/MCB.20.4.1140-1148.2000. ISSN 0270-7306. PMC 85232. PMID 10648599. 
  8. ^ Todd, J L; Tanner K G; Denu J M (May 1999). "Extracellular regulated kinases (ERK) 1 and ERK2 are authentic substrates for the dual-specificity protein-tyrosine phosphatase VHR. A novel role in down-regulating the ERK pathway". J. Biol. Chem. (UNITED STATES) 274 (19): 13271–80. doi:10.1074/jbc.274.19.13271. ISSN 0021-9258. PMID 10224087. 
  9. ^ Zhou, X; Richon V M; Wang A H; Yang X J; Rifkind R A; Marks P A (December 2000). "Histone deacetylase 4 associates with extracellular signal-regulated kinases 1 and 2, and its cellular localization is regulated by oncogenic Ras". Proc. Natl. Acad. Sci. U.S.A. (UNITED STATES) 97 (26): 14329–33. doi:10.1073/pnas.250494697. ISSN 0027-8424. PMC 18918. PMID 11114188. 
  10. ^ Roux, Philippe P; Richards Stephanie A; Blenis John (July 2003). "Phosphorylation of p90 ribosomal S6 kinase (RSK) regulates extracellular signal-regulated kinase docking and RSK activity". Mol. Cell. Biol. (United States) 23 (14): 4796–804. doi:10.1128/MCB.23.14.4796-4804.2003. ISSN 0270-7306. PMC 162206. PMID 12832467. 
  11. ^ Zhao, Y; Bjorbaek C; Moller D E (November 1996). "Regulation and interaction of pp90(rsk) isoforms with mitogen-activated protein kinases". J. Biol. Chem. (UNITED STATES) 271 (47): 29773–9. doi:10.1074/jbc.271.47.29773. ISSN 0021-9258. PMID 8939914. 
  12. ^ a b Marti, A; Luo Z; Cunningham C; Ohta Y; Hartwig J; Stossel T P; Kyriakis J M; Avruch J (January 1997). "Actin-binding protein-280 binds the stress-activated protein kinase (SAPK) activator SEK-1 and is required for tumor necrosis factor-alpha activation of SAPK in melanoma cells". J. Biol. Chem. (UNITED STATES) 272 (5): 2620–8. doi:10.1074/jbc.272.5.2620. ISSN 0021-9258. PMID 9006895. 
  13. ^ a b Butch, E R; Guan K L (February 1996). "Characterization of ERK1 activation site mutants and the effect on recognition by MEK1 and MEK2". J. Biol. Chem. (UNITED STATES) 271 (8): 4230–5. doi:10.1074/jbc.271.8.4230. ISSN 0021-9258. PMID 8626767. 
  14. ^ Schaeffer, H J; Catling A D; Eblen S T; Collier L S; Krauss A; Weber M J (September 1998). "MP1: a MEK binding partner that enhances enzymatic activation of the MAP kinase cascade". Science (UNITED STATES) 281 (5383): 1668–71. doi:10.1126/science.281.5383.1668. ISSN 0036-8075. PMID 9767029. 
  15. ^ Yung, Y; Yao Z; Hanoch T; Seger R (May 2000). "ERK1b, a 46-kDa ERK isoform that is differentially regulated by MEK". J. Biol. Chem. (UNITED STATES) 275 (21): 15799–808. doi:10.1074/jbc.M910060199. ISSN 0021-9258. PMID 10748187. 
  16. ^ a b Zheng, C F; Guan K L (November 1993). "Properties of MEKs, the kinases that phosphorylate and activate the extracellular signal-regulated kinases". J. Biol. Chem. (UNITED STATES) 268 (32): 23933–9. ISSN 0021-9258. PMID 8226933. 
  17. ^ Muda, M; Theodosiou A, Gillieron C, Smith A, Chabert C, Camps M, Boschert U, Rodrigues N, Davies K, Ashworth A, Arkinstall S (April 1998). "The mitogen-activated protein kinase phosphatase-3 N-terminal noncatalytic region is responsible for tight substrate binding and enzymatic specificity". J. Biol. Chem. (UNITED STATES) 273 (15): 9323–9. doi:10.1074/jbc.273.15.9323. ISSN 0021-9258. PMID 9535927. 
  18. ^

External links[edit]

Further reading[edit]

  • Peruzzi F, Gordon J, Darbinian N, Amini S (2003). "Tat-induced deregulation of neuronal differentiation and survival by nerve growth factor pathway.". J. Neurovirol. 8 Suppl 2 (2): 91–6. doi:10.1080/13550280290167885. PMID 12491158. 
  • Meloche S, Pouysségur J (2007). "The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition". Oncogene 26 (22): 3227–39. doi:10.1038/sj.onc.1210414. PMID 17496918. 
  • Ruscica M, Dozio E, Motta M, Magni P (2007). "Modulatory Actions of Neuropeptide Y on Prostate Cancer Growth: Role of MAP Kinase/ERK 1/2 Activatio". "Modulatory actions of neuropeptide Y on prostate cancer growth: role of MAP kinase/ERK 1/2 activation". Adv. Exp. Med. Biol. Advances In Experimental Medicine And Biology 604: 96–100. doi:10.1007/978-0-387-69116-9_7. ISBN 978-0-387-69114-5. PMID 17695723.