Madelung equations

From Wikipedia, the free encyclopedia
Jump to: navigation, search

The Madelung equations are Erwin Madelung's equivalent alternative formulation of the Schrödinger equation.


The Madelung equations are quantum Euler equations:

\partial_t \rho+\nabla\cdot(\rho\bold u)=0,
\partial_t\bold u+\bold u\cdot\nabla\bold u=-\frac{1}{m}\nabla\left(\frac{1}{\sqrt{\rho}}\hat H\sqrt{\rho}\right)=-\frac{1}{\rho}\nabla\cdot\bold p_Q-\frac{1}{m}\nabla U,

where \bold u is the flow velocity in the quantum probability space with mass density \bold \rho=m|\psi|^2. The circulation of the flow velocity field along any closed path obeys the auxiliary condition[1][2] \begin{matrix}

\Gamma \doteq \oint{d\mathbf{l}\cdot \left( m\mathbf{u} \right)}=2\pi n\hbar , & n\in \mathbb{Z}  \\

\end{matrix}. The term in the brackets represents a quantum chemical potential. The kinetic energy operator from the Hamiltonian \hat H results in a non-local quantum pressure tensor

\bold p_Q=-(\hbar/2m)^2 \rho \nabla\otimes\nabla \ln \rho

or alternatively to the Bohm quantum potential. While the latter is the icon of the de Broglie–Bohm theory, the quantum symbol of the Madelung hydrodynamics is \bold p_Q. The integral energy stored in the quantum pressure tensor is proportional to the Fisher information, which accounts for the quality of measurements.

See also[edit]


  1. ^ Madelung, E. (1926). "Eine anschauliche Deutung der Gleichung von Schrödinger". Naturwissenschaften 14 (45): 1004–1004. Bibcode:1926NW.....14.1004M. doi:10.1007/BF01504657. 
  2. ^ Bialynicki-Birula,Cieplak,Kaminski (1992), Theory of Quanta, Oxford University Press, ISBN 0195071573 

Further reading[edit]