Grifola frondosa

From Wikipedia, the free encyclopedia
  (Redirected from Maitake)
Jump to: navigation, search
Maitake
Scientific classification
Kingdom: Fungi
Phylum: Basidiomycota
Class: Agaricomycetes
Order: Polyporales
Family: Meripilaceae
Genus: Grifola
Species: G. frondosa
Binomial name
Grifola frondosa
(Dicks.) Gray
Synonyms

Polyporus frondosus Fr.[1]

Grifola frondosa is a polypore mushroom that grows in clusters at the base of trees, particularly oaks. The mushroom is commonly known among English speakers as hen-of-the-woods, ram's head and sheep's head. In the United States' supplement market, as well as in Asian grocery stores, the mushroom is known by its Japanese name maitake (舞茸), which means "dancing mushroom". Throughout Italian American communities in the northeastern United States, it is commonly known as the signorina mushroom. G. frondosa should not be confused with Laetiporus sulphureus, another edible bracket fungus that is commonly called chicken of the woods or "sulphur shelf". The fungus becomes inedible like all polypores when they are older, because it is too tough to eat.

The fungus is native to the northeastern part of Japan and North America, and is prized in traditional Chinese and Japanese herbology as a medicinal mushroom, an aid to balance out altered body systems to a normal level. It is widely eaten in Japan, and its popularity in western cuisine is growing, although the mushroom has been alleged to cause allergic reactions in rare cases.

Grifola frondosa
View the Mycomorphbox template that generates the following list
Mycological characteristics
pores on hymenium

cap is offset

or indistinct
hymenium is decurrent
lacks a stipe
spore print is white
ecology is parasitic
edibility: choice

Description[edit]

Like the sulphur shelf mushroom, G. frondosa is a perennial fungus that often grows in the same place for a number of years in succession. It occurs most prolifically in the northeastern regions of the United States, but has been found as far west as Idaho.

G. frondosa grows from an underground tuber-like structure known as a sclerotium, about the size of a potato. The fruiting body, occurring as large as 100 cm, is a cluster consisting of multiple grayish-brown caps which are often curled or spoon-shaped, with wavy margins and 2–7 cm broad. The undersurface of each cap bears approximately one to three pores per millimeter, with the tubes rarely deeper than 3 mm. The milky-white stipe (stalk) has a branchy structure and becomes tough as the mushroom matures.

In Japan, the Maitake can grow to more than 50 pounds (20 kilograms), earning this giant mushroom the title "King of Mushrooms". Maitake is one of the major culinary mushrooms used in Japan, the others being shiitake, shimeji and enoki. They are used in a wide variety of dishes, often being a key ingredient in nabemono or cooked in foil with butter.

Use in traditional Eastern medicine[edit]

The sclerotia from which hen of the woods arises have been used in traditional Chinese and Japanese medicine to enhance the immune system. Researchers have also indicated that whole maitake has the ability to regulate blood pressure, glucose, insulin, and both serum and liver lipids, such as cholesterol, triglycerides, and phospholipids, and may also be useful for weight loss.[citation needed]

Maitake is rich in minerals (such as potassium, calcium, and magnesium), various vitamins (B2, D2 and niacin), fibers and amino acids. One active constituent in Maitake for enhancing the immune activity was identified in the late 1980s as a protein-bound beta-glucan compound.

Maitake research[edit]

In 2009, a phase I/II human trial, conducted by Memorial Sloan–Kettering Cancer Center, showed Maitake could stimulate the immune systems of breast cancer patients.[2] Small experiments with human cancer patients, have shown Maitake can stimulate immune system cells, like NK cells.[3][4] In vitro research has also shown Maitake can stimulate immune system cells.[5] An in vivo experiment showed that Maitake could stimulate both the innate immune system and adaptive immune system.[6]

In vitro research has shown Maitake can induce apoptosis in cancer cell lines (human prostatic cancer cells, Hep 3B cells, SGC-7901 cells, murine skin carcinoma cells)[7][8][9][10] as well as inhibit the growth of various types of cancer cells (canine cancer cells, bladder cancer cells).[11][12][13] Small studies with human cancer patients, revealed a portion of the Maitake mushroom, known as the "Maitake D-fraction", possess anti-cancer activity.[14][15] In vitro research demonstrated the mushroom has potential anti-metastatic properties.[16] In 1997, the U.S. Food and Drug Administration (FDA) approved an Investigational New Drug Application for a portion of the mushroom.[17]

Research has shown Maitake has a hypoglycemic effect, and may be beneficial for the management of diabetes.[18][19][20][21][22][23] The reason Maitake lowers blood sugar is due to the fact the mushroom naturally contains an alpha glucosidase inhibitor.[24]

Maitake contains antioxidants and may partially inhibit the enzyme cyclooxygenase.[25] An experiment showed that an extract of Maitake inhibited angiogenesis via inhibition of the vascular endothelial growth factor (VEGF).[26]

Lys-N is a unique protease found in Maitake.[27] Lys-N is used for proteomics experiments due to its protein cleavage specificity.[28]

Maitake gallery[edit]

See also[edit]

References[edit]

  1. ^ McIlvaine, Charles; Robert K. Macadam; and Robert L. Shaffer. 1973. One Thousand American Fungi. Dover Publications. New York. 729 pp. (Polyporus frondosus, pp. 482-483 & Plate CXXVIII.)
  2. ^ Deng G, Lin H, Seidman A, et al. (September 2009). "A phase I/II trial of a polysaccharide extract from Grifola frondosa (Maitake mushroom) in breast cancer patients: immunological effects". Journal of Cancer Research and Clinical Oncology 135 (9): 1215–21. doi:10.1007/s00432-009-0562-z. PMID 19253021. 
  3. ^ Kodama N, Komuta K, Nanba H (2003). "Effect of Maitake (Grifola frondosa) D-Fraction on the activation of NK cells in cancer patients". Journal of Medicinal Food 6 (4): 371–7. doi:10.1089/109662003772519949. PMID 14977447. 
  4. ^ Kodama N, Komuta K, Sakai N, Nanba H (December 2002). "Effects of D-Fraction, a polysaccharide from Grifola frondosa on tumor growth involve activation of NK cells". Biological & Pharmaceutical Bulletin 25 (12): 1647–50. doi:10.1248/bpb.25.1647. PMID 12499658. 
  5. ^ Kodama N, Asakawa A, Inui A, Masuda Y, Nanba H (March 2005). "Enhancement of cytotoxicity of NK cells by D-Fraction, a polysaccharide from Grifola frondosa". Oncology Reports 13 (3): 497–502. PMID 15706424. 
  6. ^ Kodama N, Murata Y, Nanba H (2004). "Administration of a polysaccharide from Grifola frondosa stimulates immune function of normal mice". Journal of Medicinal Food 7 (2): 141–5. doi:10.1089/1096620041224012. PMID 15298759. 
  7. ^ Fullerton SA, Samadi AA, Tortorelis DG, et al. (2000). "Induction of apoptosis in human prostatic cancer cells with beta-glucan (Maitake mushroom polysaccharide)". Molecular Urology 4 (1): 7–13. PMID 10851301. 
  8. ^ Lin JT, Liu WH (October 2006). "o-Orsellinaldehyde from the submerged culture of the edible mushroom Grifola frondosa exhibits selective cytotoxic effect against Hep 3B cells through apoptosis". Journal of Agricultural and Food Chemistry 54 (20): 7564–9. doi:10.1021/jf0616762. PMID 17002422. 
  9. ^ Cui FJ, Li Y, Xu YY, et al. (April 2007). "Induction of apoptosis in SGC-7901 cells by polysaccharide-peptide GFPS1b from the cultured mycelia of Grifola frondosa GF9801". Toxicology in Vitro 21 (3): 417–27. doi:10.1016/j.tiv.2006.10.004. PMID 17150327. 
  10. ^ Gu YH, Belury MA (March 2005). "Selective induction of apoptosis in murine skin carcinoma cells (CH72) by an ethanol extract of Lentinula edodes". Cancer Letters 220 (1): 21–8. doi:10.1016/j.canlet.2004.06.037. PMID 15737684. 
  11. ^ Konno S (2004). "Potential growth inhibitory effect of maitake D-fraction on canine cancer cells". Veterinary Therapeutics 5 (4): 263–71. PMID 15719326. 
  12. ^ Konno S (March 2007). "Effect of various natural products on growth of bladder cancer cells: two promising mushroom extracts". Alternative Medicine Review 12 (1): 63–8. PMID 17397268. 
  13. ^ Nanba H (September 1995). "Activity of maitake D-fraction to inhibit carcinogenesis and metastasis". Annals of the New York Academy of Sciences 768 (1): 243–5. doi:10.1111/j.1749-6632.1995.tb12130.x. PMID 8526356. 
  14. ^ Kodama N, Komuta K, Nanba H (June 2002). "Can maitake MD-fraction aid cancer patients?". Alternative Medicine Review 7 (3): 236–9. PMID 12126464. 
  15. ^ Nanba H, Kubo K (December 1997). "Effect of Maitake D-fraction on cancer prevention". Annals of the New York Academy of Sciences 833 (1 Cancer): 204–7. doi:10.1111/j.1749-6632.1997.tb48611.x. PMID 9616756. 
  16. ^ Masuda Y, Murata Y, Hayashi M, Nanba H (June 2008). "Inhibitory effect of MD-Fraction on tumor metastasis: involvement of NK cell activation and suppression of intercellular adhesion molecule (ICAM)-1 expression in lung vascular endothelial cells". Biological & Pharmaceutical Bulletin 31 (6): 1104–8. doi:10.1248/bpb.31.1104. PMID 18520039. 
  17. ^ http://sci.cancerresearchuk.org/labs/med_mush/final_pdfs/chapt7.pdf[dead link]
  18. ^ Konno S, Tortorelis DG, Fullerton SA, Samadi AA, Hettiarachchi J, Tazaki H (December 2001). "A possible hypoglycaemic effect of maitake mushroom on Type 2 diabetic patients". Diabetic Medicine 18 (12): 1010. doi:10.1046/j.1464-5491.2001.00532-5.x. PMID 11903406. 
  19. ^ Hong L, Xun M, Wutong W (April 2007). "Anti-diabetic effect of an alpha-glucan from fruit body of maitake (Grifola frondosa) on KK-Ay mice". The Journal of Pharmacy and Pharmacology 59 (4): 575–82. doi:10.1211/jpp.59.4.0013. PMID 17430642. 
  20. ^ Kubo K, Aoki H, Nanba H (August 1994). "Anti-diabetic activity present in the fruit body of Grifola frondosa (Maitake). I". Biological & Pharmaceutical Bulletin 17 (8): 1106–10. doi:10.1248/bpb.17.1106. PMID 7820117. 
  21. ^ Lo HC, Hsu TH, Chen CY (2008). "Submerged culture mycelium and broth of Grifola frondosa improve glycemic responses in diabetic rats". The American Journal of Chinese Medicine 36 (2): 265–85. doi:10.1142/S0192415X0800576X. PMID 18457360. 
  22. ^ Manohar V, Talpur NA, Echard BW, Lieberman S, Preuss HG (January 2002). "Effects of a water-soluble extract of maitake mushroom on circulating glucose/insulin concentrations in KK mice". Diabetes, Obesity & Metabolism 4 (1): 43–8. doi:10.1046/j.1463-1326.2002.00180.x. PMID 11874441. 
  23. ^ Horio H, Ohtsuru M (February 2001). "Maitake (Grifola frondosa) improve glucose tolerance of experimental diabetic rats". Journal of Nutritional Science and Vitaminology 47 (1): 57–63. doi:10.3177/jnsv.47.57. PMID 11349892. 
  24. ^ Matsuur H, Asakawa C, Kurimoto M, Mizutani J (July 2002). "Alpha-glucosidase inhibitor from the seeds of balsam pear (Momordica charantia) and the fruit bodies of Grifola frondosa". Bioscience, Biotechnology, and Biochemistry 66 (7): 1576–8. doi:10.1271/bbb.66.1576. PMID 12224646. 
  25. ^ Zhang Y, Mills GL, Nair MG (December 2002). "Cyclooxygenase inhibitory and antioxidant compounds from the mycelia of the edible mushroom Grifola frondosa". Journal of Agricultural and Food Chemistry 50 (26): 7581–5. doi:10.1021/jf0257648. PMID 12475274. 
  26. ^ Lee JS, Park BC, Ko YJ, et al. (December 2008). "Grifola frondosa (maitake mushroom) water extract inhibits vascular endothelial growth factor-induced angiogenesis through inhibition of reactive oxygen species and extracellular signal-regulated kinase phosphorylation". Journal of Medicinal Food 11 (4): 643–51. doi:10.1089/jmf.2007.0629. PMID 19053855. 
  27. ^ Nonaka, T; Y Hashimoto, K Takio (July 1998). "Kinetic characterization of lysine-specific metalloendopeptidases from Grifola frondosa and Pleurotus ostreatus fruiting bodies". Journal of Biochemistry 124 (1): 157–162. ISSN 0021-924X. PMID 9644258. 
  28. ^ Taouatas, Nadia; Madalina M Drugan, Albert J R Heck, Shabaz Mohammed (May 2008). "Straightforward ladder sequencing of peptides using a Lys-N metalloendopeptidase". Nat Meth 5 (5): 405–407. doi:10.1038/nmeth.1204. ISSN 1548-7091. PMID 18425140.