Mass storage

From Wikipedia, the free encyclopedia
Jump to: navigation, search
This article is about mass storage in general. For the USB protocol, see USB mass storage device class.

In computing, mass storage refers to the storage of large amounts of data in a persisting and machine-readable fashion. Devices and/or systems that have been described as mass storage include tape libraries, RAID systems, hard disk drives, solid-state drives, magnetic tape drives, optical disc drives, magneto-optical disc drives, drum memory (historic), floppy disk drives (historic), punched tape (historic) and holographic memory (experimental). Mass storage includes devices with removable and non-removable media. It does not include random access memory (RAM), which is volatile in that it loses its contents after power loss.

The notion of "large" amounts of data is of course highly dependent on the time frame and the market segment, as mass storage device capacity has increased by many orders of magnitude since the beginnings of computer technology in the late 1940s and continues to grow; however, in any time frame, common mass storage devices have tended to be much larger and at the same time much slower than common realizations of contemporaneous primary storage technology. The term mass storage was used in the PC marketplace for devices far smaller than devices that were not considered mass storage in the mainframe marketplace.

Mass storage devices are characterized by:

  • Sustainable transfer speed
  • Seek time
  • Cost
  • Capacity

Today, magnetic disks are the predominant storage media in personal computers. Optical discs, however, are almost exclusively used in the large-scale distribution of retail software, music and movies because of the cost and manufacturing efficiency of the molding process used to produce DVD and compact discs and the nearly-universal presence of reader drives in personal computers and consumer appliances.[1] Flash memory (in particular, NAND flash) has an established and growing niche as a replacement for magnetic hard disks in high performance enterprise computing installations because it has no moving parts (making it more robust) and has a much lower latency; as removable storage such as USB sticks, because in lower capacity ranges it can be made smaller and cheaper than hard disks; and on portable devices such as notebook computers and cell phones because of its lower size and weight, better tolerance of physical stress caused by e.g. shaking or dropping, and low power consumption.[2][3]

The design of computer architectures and operating systems are often dictated by the mass storage and bus technology of their time.[4]

Usage[edit]

Mass storage devices used in desktop and most server computers typically have their data organized in a file system. The choice of file system is often important in maximizing the performance of the device: general purpose file systems (such as NTFS and HFS, for example) tend to do poorly on slow-seeking optical storage such as compact discs.

Some relational databases can also be deployed on mass storage devices without an intermediate file system or storage manager. Oracle and MySQL, for example, can store table data directly on raw block devices.

On removable media, archive formats (such as tar archives on magnetic tape, which pack file data end-to-end) are sometimes used instead of file systems because they are more portable and simpler to stream.

On embedded computers, it is common to memory map the contents of a mass storage device (usually ROM or flash memory) so that its contents can be traversed as in-memory data structures or executed directly by programs.

References[edit]

  1. ^ Taylor, Jim. "DVD FAQ". Retrieved 2007-07-08. "In 2003, six years after introduction, there were over 250 million DVD playback devices worldwide, counting DVD players, DVD PCs, and DVD game consoles." 
  2. ^ Gonsalves, Antone (23 May 2007). "Micron predicts flash memory will replace disk drives". EETimes. .
  3. ^ "Flash Drives: Always on the Go, Without Moving Parts". New York Times. 2005-02-17. Retrieved 2008-02-24.  |first1= missing |last1= in Authors list (help).
  4. ^ Patterson, Dave (June 2003). "A Conversation With Jim Gray" (– Scholar search). ACM Queue 1 (4). [dead link]. (A discussion of recent trends in mass storage.)

See also[edit]