Materials science

From Wikipedia, the free encyclopedia
  (Redirected from Material science)
Jump to: navigation, search
For one of the various publications named for the subject, see Materials Science and Engineering (journal).
Depiction of two "Fullerene Nano-gears" with multiple teeth.

Materials science, also commonly known as materials science and engineering, is an interdisciplinary field which deals with the discovery and design of new materials. This relatively new scientific field involves studying materials through the materials paradigm (synthesis, structure, properties and performance). It incorporates elements of physics and chemistry, and is at the forefront of nanoscience and nanotechnology research. In recent years, materials science has become more widely known as a specific field of science and engineering.

It is an important part of forensic engineering (the investigation of materials, products, structures or components that fail or do not operate or function as intended, causing personal injury or damage to property) and failure analysis, the latter being the key to understanding, for example, the cause of various aviation accidents. Many of the most pressing scientific problems that are faced today are due to the limitations of the materials that are available and, as a result, breakthroughs in this field are likely to have a significant impact on the future of technology.


A late Bronze Age sword or dagger blade.

The material of choice of a given era is often a defining point. Phrases such as Stone Age, Bronze Age, Iron Age, and Steel Age are great examples. Originally deriving from the manufacture of ceramics and its putative derivative metallurgy, materials science is one of the oldest forms of engineering and applied science. Modern materials science evolved directly from metallurgy, which itself evolved from mining and (likely) ceramics and the use of fire. A major breakthrough in the understanding of materials occurred in the late 19th century, when the American scientist Josiah Willard Gibbs demonstrated that the thermodynamic properties related to atomic structure in various phases are related to the physical properties of a material. Important elements of modern materials science are a product of the space race: the understanding and engineering of the metallic alloys, and silica and carbon materials, used in the construction of space vehicles enabling the exploration of space. Materials science has driven, and been driven by, the development of revolutionary technologies such as plastics, semiconductors, and biomaterials.

Before the 1960s (and in some cases decades after), many materials science departments were named metallurgy departments, reflecting the 19th and early 20th century emphasis on metals. The field has since broadened to include every class of materials, including ceramics, polymers, semiconductors, magnetic materials, medical implant materials, biological materials and nanomaterials (materiomics).


The materials paradigm represented in the form of a tetrahedron.

A materials is defined as a substance (most a solid or condensed matter) that is intended to be used for certain applications.[1] There are a myriad of materials around us—they can be found in anything from buildings to spacecrafts. Materials can generally be divided into two classes: crystalline and non-crystalline. The traditional examples of materials are metals, ceramics and polymers.[2] New and advanced materials that are being developed include semiconductors, nanomaterials, biomaterials,[3] etc.

The basis of materials science involves studying the structure of materials, and relating them to their properties. Once, a materials scientists knows about this structure-property correlation, he/she can then go on to study the relative performance of a material in a certain application. The major determinants of the structure of a material and thus of its properties are its constituent chemical elements and the way in which it has been processed into its final form. These characteristics, taken together and related through the laws of thermodynamics and kinetics, govern a material’s microstructure, and thus its properties.


As mentioned above, structure is one of the most important components of the field of materials science. Materials science examines the structure of materials from the atomic scale, all the way up to the macro scale. Characterization is the way materials scientists examine the structure of a materials. This involves techniques such as diffraction with x-rays, electrons, or neutrons, and various forms of spectroscopy and chemical analysis such as Raman spectroscopy, energy-dispersive spectroscopy (EDS), chromatography, thermal analysis, electron microscope analysis, etc. Structure is studied at various levels, as detailed below.

Atomistic Structure[edit]

This deals with the atoms of the materials, and how they are arranged to give molecules, crystals, etc. Much of the electrical, magnetic and chemical properties of materials arise from this level of structure. The length scales involved are in angstroms (0.1 nm). They way in which the atoms and molecules are bonded and arranged is fundamental to studying the properties and behavior of any material.


Main article: Nanostructure
Buckminsterfullerene nanostructure.

Nanostructure deals with objects and structures that are in the 1—100 nm range.[4] In many materials, atoms or molecules agglomerate together to form objects at the nanoscale. This leads to many interesting electrical, magnetic, optical and mechanical properties.

In describing nanostructures it is necessary to differentiate between the number of dimensions on the nanoscale. Nanotextured surfaces have one dimension on the nanoscale, i.e., only the thickness of the surface of an object is between 0.1 and 100 nm. Nanotubes have two dimensions on the nanoscale, i.e., the diameter of the tube is between 0.1 and 100 nm; its length could be much greater. Finally, spherical nanoparticles have three dimensions on the nanoscale, i.e., the particle is between 0.1 and 100 nm in each spatial dimension. The terms nanoparticles and ultrafine particles (UFP) often are used synonymously although UFP can reach into the micrometre range. The term 'nanostructure' is often used when referring to magnetic technology. Nanoscale structure in biology is often called ultrastructure.

Materials whose atoms/molecules form constituents in the nanoscale (i.e., they form nanostructure) are called nanomaterials. Nanomaterials are subject of intense research in the materials science community due to the unique properties that they exhibit.


Main article: Microstructure
Microstructure of pearlite.

Microstructure is defined as the structure of a prepared surface or thin foil of material as revealed by a microscope above 25× magnification. It deals with objects in from 100 nm to few cm. The microstructure of a material (which can be broadly classified into metallic, polymeric, ceramic and composite) can strongly influence physical properties such as strength, toughness, ductility, hardness, corrosion resistance, high/low temperature behavior, wear resistance, and so on. Most of the traditional materials (such as metals and ceramics) are microstructured.

The manufacture of a perfect crystal of a material is physically impossible. For example, a crystalline material will contain defects such as precipitates, grain boundaries (Hall–Petch relationship), interstitial atoms, vacancies or substitutional atoms. The microstructure of materials reveals these defects, so that they can be studied.


Macrostructure is the appearance of a material in the scale millimeters to meters—it is the structure of the material as seen with the naked eye.


Main article: Crystallography
Crystal structure of a perovskite with a chemical formula ABX3.[5]

Crystallography is the science that examines the arrangement of atoms in crystalline solids. Crystallography is a useful tool for materials scientists. In single crystals, the effects of the crystalline arrangement of atoms is often easy to see macroscopically, because the natural shapes of crystals reflect the atomic structure. In addition, physical properties are often controlled by crystalline defects. The understanding of crystal structures is an important prerequisite for understanding crystallographic defects. Mostly, materials do not occur as a single crystal, but in poly-crystalline form (i.e., as an aggregate of small crystals with different orientations). Because of this, the powder diffraction method, which uses diffraction patterns of polycrystalline samples with a large number of crystals, plays an important role in structural determination. Most materials have a crystalline structure. But, there are some important materials that do not exhibit regular crystal structure. Polymers display varying degrees of crystallinity, and many are completely non-crystalline. Glass as, some ceramics, and many natural materials are amorphous, not possessing any long-range order in their atomic arrangements. The study of polymers combines elements of chemical and statistical thermodynamics to give thermodynamic, as well as mechanical, descriptions of physical properties.


Main article: Chemical bonding

To obtain a full understanding of the material structure and how it relates to its properties, the materials scientist must study how the different atoms, ions and molecules are arranged and bonded to each other. This involves the study and use of quantum chemistry or quantum physics. Solid-state physics, solid state chemistry and physical chemistry are also involved in the study of bonding and structure.


Materials exhibit a myriad of properties. The important properties of materials are as follows:

The properties of a materials determine its usability and hence its engineering application.

Synthesis and Processing[edit]

Synthesis and processing involves the creation of a materials with the desired micro/nanostructure. From an engineering standpoint, a materials cannot be used in industry if no economical manufacturing method for it has been developed. Thus, the processing of materials is very important to the field of materials science.

Different materials require different processing/synthesis techniques. For example, the processing of metals has historically been very important as is studied under the branch of materials science known as physical metallurgy. Also, chemical and physical techniques are also used to synthesis other materials such as polymers, ceramics, thin films, etc. Currently, new techniques are being developed to synthesis nanomaterials such as graphene.


Main article: Thermodynamics
A phase diagram for a binary system displaying a eutectic point.

Thermodynamics is concerned with heat and temperature and their relation to energy and work. It defines macroscopic variables, such as internal energy, entropy, and pressure, that partly describe a body of matter or radiation. It states that the behavior of those variables is subject to general constraints, that are common to all materials, not the peculiar properties of particular materials. These general constraints are expressed in the four laws of thermodynamics. Thermodynamics describes the bulk behavior of the body, not the microscopic behaviors of the very large numbers of its microscopic constituents, such as molecules. Its laws are explained by statistical mechanics, in terms of the microscopic constituents.

The study of thermodynamics is fundamental to materials science. It forms the foundation to treat general phenomena in materials science and engineering, including chemical reactions, magnetism, polarizability, and elasticity. It also helps in the understanding of phase diagrams and phase equilibrium.


Main article: Chemical Kinetics

Kinetics if the study of the rates at which systems that are out of equilibrium change under the influence of various forces. When applied to materials science, it deals with how a materials changes with time (moves from non-equilibrium to equilibrium state) due to application of a certain field—it details the rate of various processes evolving in materials including shape, size, composition and structure. Diffusion is important in the study of kinetics as this is the most common mechanism by which materials undergo change.

Kinetics is essential in processing of materials because, among other things, it details how the microstructure changes with application of heat.

Materials in research[edit]

Materials science has received much attention from researchers. In most universities, many departments ranging from physics to chemistry to chemical engineering—in addition to materials science departments—are involved in materials research. Research in materials science is vibrant and consists of many avenues. The following list is in no way exhaustive, it just serves to highlight certain important research areas.


Main article: Nanomaterials
A scanning electron microscopy image of carbon nanotubes bundles

Nanomaterials describe, in principle, materials of which a single unit is sized (in at least one dimension) between 1 and 1000 nanometers (10−9 meter) but is usually 1—100 nm.

Nanomaterials research takes a materials science-based approach to nanotechnology, leveraging advances in materials metrology and synthesis which have been developed in support of microfabrication research. Materials with structure at the nanoscale often have unique optical, electronic, or mechanical properties.

The field of nanomaterials is loosely organized, like the traditional field of chemistry, into organic (carbon-based) nanomaterials such as fullerenes, and inorganic nanomaterials based on other elements, such as silicon. Examples of nanomaterials include fullerenes, carbon nanotubes, nanocrystals, etc.


Main article: Biomaterials
The iridescent nacre inside a nautilus shell.

A biomaterial is any matter, surface, or construct that interacts with biological systems. As a science, biomaterials is about fifty years old. The study of biomaterials is called biomaterials science. It has experienced steady and strong growth over its history, with many companies investing large amounts of money into the development of new products. Biomaterials science encompasses elements of medicine, biology, chemistry, tissue engineering and materials science.

Biomaterials can be derived either from nature or synthesized in the laboratory using a variety of chemical approaches utilizing metallic components, polymers, ceramics or composite materials. They are often used and/or adapted for a medical application, and thus comprises whole or part of a living structure or biomedical device which performs, augments, or replaces a natural function. Such functions may be benign, like being used for a heart valve, or may be bioactive with a more interactive functionality such as hydroxy-apatite coated hip implants. Biomaterials are also used every day in dental applications, surgery, and drug delivery. For example, a construct with impregnated pharmaceutical products can be placed into the body, which permits the prolonged release of a drug over an extended period of time. A biomaterial may also be an autograft, allograft or xenograft used as a transplant material.

Electronic, Optical and Magnetic Materials[edit]

Semiconductors, metals, and ceramics are used today to form highly complex systems, such as integrated electronic circuits, optoelectronic devices, and magnetic and optical mass storage media. These materials form the basis of our modern computing world, and hence research into these materials are of vital importance.

Semiconductors are a traditional example of these type of material. They are materials that have properties that are intermediate between conductors and insulators. Their electrical conductance are very sensitive to impurity concentrations, and this leads to fact that they can be doped. Hence, semiconductors form the basis of the traditional computer.

This field also includes new aeas of research such as superconducting materials, spintronics, metamaterials, etc. The study of these materials involves knowledge of materials science and solid state physics or condensed matter physics.

Computational Materials Science and Materials Theory[edit]

With the increase in computing power, simulating the behavior of materials has become possible. This enables materials scientists to discovery properties of materials previously unknown, as well as to design new materials. Up until now, new materials were found by a time consuming trial and error process. But, now it is hoped that computational techniques could drastically reduce that time, and allow us to tailor materials properties. This involves simulating materials at all length scales, using methods such as density functional theory, molecular dynamics, etc.

Materials in industry[edit]

Radical materials advances can drive the creation of new products or even new industries, but stable industries also employ materials scientists to make incremental improvements and troubleshoot issues with currently used materials. Industrial applications of materials science include materials design, cost-benefit tradeoffs in industrial production of materials, processing techniques (casting, rolling, welding, ion implantation, crystal growth, thin-film deposition, sintering, glassblowing, etc.), and analytical techniques (characterization techniques such as electron microscopy, x-ray diffraction, calorimetry, nuclear microscopy (HEFIB), Rutherford backscattering, neutron diffraction, small-angle X-ray scattering (SAXS), etc.).

Besides material characterization, the material scientist/engineer also deals with the extraction of materials and their conversion into useful forms. Thus ingot casting, foundry techniques, blast furnace extraction, and electrolytic extraction are all part of the required knowledge of a materials engineer. Often the presence, absence or variation of minute quantities of secondary elements and compounds in a bulk material will have a great impact on the final properties of the materials produced, for instance, steels are classified based on 1/10 and 1/100 weight percentages of the carbon and other alloying elements they contain. Thus, the extraction and purification techniques employed in the extraction of iron in the blast furnace will have an impact of the quality of steel that may be produced.

Ceramics and glasses[edit]

Main article: Ceramics
Si3N4 ceramic bearing parts

Another application of the material sciences is the structures of glass and ceramics, typically associated with the most brittle materials. Bonding in ceramics and glasses use covalent and ionic-covalent types with SiO2 (silica or sand) as a fundamental building block. Ceramics are as soft as clay and as hard as stone and concrete. Usually, they are crystalline in form. Most glasses contain a metal oxide fused with silica. At high temperatures used to prepare glass, the material is a viscous liquid. The structure of glass forms into an amorphous state upon cooling. Windowpanes and eyeglasses are important examples. Fibers of glass are also available. Scratch resistant Corning Gorilla Glass is a well-known example of the application of materials science to drastically improve the properties of common components. Diamond and carbon in its graphite form are considered to be ceramics.

Engineering ceramics are known for their stiffness and stability under high temperatures, compression and electrical stress. Alumina, silicon carbide, and tungsten carbide are made from a fine powder of their constituents in a process of sintering with a binder. Hot pressing provides higher density material. Chemical vapor deposition can place a film of a ceramic on another material. Cermets are ceramic particles containing some metals. The wear resistance of tools is derived from cemented carbides with the metal phase of cobalt and nickel typically added to modify properties.

Composite materials[edit]

Main article: Composite materials
A 6 μm diameter carbon filament (running from bottom left to top right) siting atop the much larger human hair.

Filaments are commonly used for reinforcement in composite materials.

Another application of material science in industry is the making of composite materials. Composite materials are structured materials composed of two or more macroscopic phases. Applications range from structural elements such as steel-reinforced concrete, to the thermally insulative tiles which play a key and integral role in NASA's Space Shuttle thermal protection system which is used to protect the surface of the shuttle from the heat of re-entry into the Earth's atmosphere. One example is reinforced Carbon-Carbon (RCC), the light gray material which withstands re-entry temperatures up to 1510 °C (2750 °F) and protects the Space Shuttle's wing leading edges and nose cap. RCC is a laminated composite material made from graphite rayon cloth and impregnated with a phenolic resin. After curing at high temperature in an autoclave, the laminate is pyrolized to convert the resin to carbon, impregnated with furfural alcohol in a vacuum chamber, and cured/pyrolized to convert the furfural alcohol to carbon. In order to provide oxidation resistance for reuse capability, the outer layers of the RCC are converted to silicon carbide.

Other examples can be seen in the "plastic" casings of television sets, cell-phones and so on. These plastic casings are usually a composite material made up of a thermoplastic matrix such as acrylonitrile-butadiene-styrene (ABS) in which calcium carbonate chalk, talc, glass fibers or carbon fibers have been added for added strength, bulk, or electrostatic dispersion. These additions may be referred to as reinforcing fibers, or dispersants, depending on their purpose.


Main article: Polymers
The repeating unit of the polymer polypropylene
Expanded polystyrene polymer packaging.

Polymers are also an important part of materials science. Polymers are the raw materials (the resins) used to make what we commonly call plastics. Plastics are really the final product, created after one or more polymers or additives have been added to a resin during processing, which is then shaped into a final form. Polymers which have been around, and which are in current widespread use, include polyethylene, polypropylene, PVC, polystyrene, nylons, polyesters, acrylics, polyurethanes, and polycarbonates. Plastics are generally classified as "commodity", "specialty" and "engineering" plastics.

PVC (polyvinyl-chloride) is widely used, inexpensive, and annual production quantities are large. It lends itself to an incredible array of applications, from artificial leather to electrical insulation and cabling, packaging and containers. Its fabrication and processing are simple and well-established. The versatility of PVC is due to the wide range of plasticisers and other additives that it accepts. The term "additives" in polymer science refers to the chemicals and compounds added to the polymer base to modify its material properties.

Polycarbonate would be normally considered an engineering plastic (other examples include PEEK, ABS). Engineering plastics are valued for their superior strengths and other special material properties. They are usually not used for disposable applications, unlike commodity plastics.

Specialty plastics are materials with unique characteristics, such as ultra-high strength, electrical conductivity, electro-fluorescence, high thermal stability, etc.

The dividing lines between the various types of plastics is not based on material but rather on their properties and applications. For instance, polyethylene (PE) is a cheap, low friction polymer commonly used to make disposable shopping bags and trash bags, and is considered a commodity plastic, whereas medium-density polyethylene (MDPE) is used for underground gas and water pipes, and another variety called Ultra-high Molecular Weight Polyethylene UHMWPE is an engineering plastic which is used extensively as the glide rails for industrial equipment and the low-friction socket in implanted hip joints.

Metal alloys[edit]

Main article: Alloys
Wire rope made from steel alloy.

The study of metal alloys is a significant part of materials science. Of all the metallic alloys in use today, the alloys of iron (steel, stainless steel, cast iron, tool steel, alloy steels) make up the largest proportion both by quantity and commercial value. Iron alloyed with various proportions of carbon gives low, mid and high carbon steels. An iron carbon alloy is only considered steel if the carbon level is between 0.01% and 2.00%. For the steels, the hardness and tensile strength of the steel is related to the amount of carbon present, with increasing carbon levels also leading to lower ductility and toughness. Heat treatment processes such as quenching and tempering can significantly change these properties however. Cast Iron is defined as an iron–carbon alloy with more than 2.00% but less than 6.67% carbon. Stainless steel is defined as a regular steel alloy with greater than 10% by weight alloying content of Chromium. Nickel and Molybdenum are typically also found in stainless steels.

Other significant metallic alloys are those of aluminium, titanium, copper and magnesium. Copper alloys have been known for a long time (since the Bronze Age), while the alloys of the other three metals have been relatively recently developed. Due to the chemical reactivity of these metals, the electrolytic extraction processes required were only developed relatively recently. The alloys of aluminium, titanium and magnesium are also known and valued for their high strength-to-weight ratios and, in the case of magnesium, their ability to provide electromagnetic shielding. These materials are ideal for situations where high strength-to-weight ratios are more important than bulk cost, such as in the aerospace industry and certain automotive engineering applications.

Relation to other fields[edit]

Materials science evolved—starting from the 1960s—because it was recognized that to create, discover and design new materials, one had to approach it from a unified manner. Thus, materials science and engineering emerged at the intersection of various fields such as metallurgy, solid state physics, chemistry, chemical engineering, mechanical engineering and electrical engineering.

The field is inherently interdisciplinary, and the materials scientists/engineer must be aware and make use of the methods of the physicist, chemist and engineer. The field thus, maintains close relationships with these field. Also, many physicists, chemists and engineers also find themselves working in materials science.

The overlap between physics and materials science has led to the offshoot field of materials physics, which is concerned with the physical properties of materials. The approach is generally more macroscopic and applied than in condensed matter physics. See important publications in materials physics for more details on this field of study.

The field of materials science and engineering is important both from a scientific perspective, as well as from an engineering one. When discovering new materials, one encounters new phenomena that may not have been observe before. Hence, there is lot of science to be discovered when working with materials. Materials science also provides test for theories in condensed matter physics.

Materials for an engineer is of utmost importance. The usage of the appropriate materials is crucial when designing systems, and hence, engineers are always involved in materials. Thus, materials science is becoming increasingly important in a engineer's education.

Emerging technologies in materials science[edit]

Emerging technology Status Potentially marginalized technologies Potential applications Related articles
Aerogel Hypothetical, experiments, diffusion, early uses[8] Traditional Insulation, Glass Improved insulation, insulative glass if it can be made clear, sleeves for oil pipelines, aerospace, high-heat & extreme cold applications
Amorphous metal Experiments Kevlar Armor
Conductive Polymers Research, experiments, prototypes Conductors Lighter and cheaper wires, antistatic materials, organic solar cells
Femtotechnology, Picotechnology Hypothetical Present nuclear New materials; nuclear weapons, power
Fullerene Experiments, diffusion Synthetic diamond and carbon nanotubes (e.g. Buckypaper) Programmable matter
Graphene Hypothetical, experiments, diffusion, early uses[9][10] silicon-based integrated circuit Components with higher strength to weight ratios, transistors that operate at higher frequency, lower cost of display screens in mobile devices, storing hydrogen for fuel cell powered cars, sensors to diagnose diseases[11]
High-temperature superconductivity Cryogenic receiver front-end (CRFE) RF and microwave filter systems for mobile phone base stations; prototypes in dry ice; Hypothetical and experiments for higher temperatures[12] Copper wire, semiconductor integral circuits No loss conductors, frictionless bearings, magnetic levitation, lossless high-capacity accumulators, electric cars, heat-free integral circuits and processors
LiTraCon Experiments, already used to make Europe Gate Glass Construction of skyscrapers, towers, and sculptures like Europe Gate
Metamaterials Hypothetical, experiments, diffusion[13] Classical optics Microscopes, cameras, metamaterial cloaking, cloaking devices
Metal foam Research, commercialization Hulls Space colonies, floating cities
Multi-function structures[14] Hypothetical, experiments, some prototypes, few commercial Composite materials mostly Wide range, e.g., self health monitoring, self healing material, morphing...
Nanomaterials: carbon nanotubes Hypothetical, experiments, diffusion, early uses[15][16] Structural steel and aluminium Stronger, lighter materials, space elevator Potential applications of carbon nanotubes, carbon fiber
Programmable matter Hypothetical, experiments[17][18] Coatings, catalysts Wide range, e.g., claytronics, synthetic biology
Quantum dots Research, experiments, prototypes[19] LCD, LED Quantum dot laser, future use as programmable matter in display technologies (TV, projection), optical data communications (high-speed data transmission), medicine (laser scalpel)
Silicene Hypothetical, research Field-effect transistors
Superalloy Research, diffusion Aluminum, titanium, composite materials Aircraft Jet engines
Synthetic diamond Research Silicon transistors Electronics

See also[edit]



  1. ^ "For Authors: Nature Materials"
  2. ^ Callister, Jr., Rethwisch. "Materials Science and Engineering – An Introduction" (8th ed.). John Wiley and Sons, 2009 p.5-6
  3. ^ Callister, Jr., Rethwisch. Materials Science and Engineering – An Introduction (8th ed.). John Wiley and Sons, 2009 p.10-12
  4. ^ Cristina Buzea, Ivan Pacheco, and Kevin Robbie (2007). "Nanomaterials and Nanoparticles: Sources and Toxicity". Biointerphases 2 (4): MR17–MR71. doi:10.1116/1.2815690. PMID 20419892. 
  5. ^ A. Navrotsky (1998). "Energetics and Crystal Chemical Systematics among Ilmenite, Lithium Niobate, and Perovskite Structures". Chem. Mater. 10 (10): 2787. doi:10.1021/cm9801901. 
  6. ^ Shelby, R. A.; Smith D.R.; Shultz S.; Nemat-Nasser S.C. (2001). "Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial". Applied Physics Letters 78 (4): 489. Bibcode:2001ApPhL..78..489S. doi:10.1063/1.1343489. [dead link]
  7. ^ Smith, D. R.; Padilla, WJ; Vier, DC; Nemat-Nasser, SC; Schultz, S (2000). "Composite Medium with Simultaneously Negative Permeability and Permittivity". Physical Review Letters 84 (18): 4184–7. Bibcode:2000PhRvL..84.4184S. doi:10.1103/PhysRevLett.84.4184 (inactive 2014-04-15). PMID 10990641. 
  8. ^ "Sto AG, Cabot Create Aerogel Insulation". Construction Digital. 15 November 2011. Retrieved 18 November 2011. 
  9. ^ "Is graphene a miracle material?". BBC Click. 21 May 2011. Retrieved 18 November 2011. 
  10. ^ "Could graphene be the new silicon?". The Guardian. 13 November 2011. Retrieved 18 November 2011. 
  11. ^ "Applications of Graphene under Development". 
  12. ^ "The 'new age' of super materials". BBC News. 5 March 2007. Retrieved 27 April 2011. 
  13. ^ "Strides in Materials, but No Invisibility Cloak". The New York Times. 8 November 2010. Retrieved 21 April 2011. 
  14. ^ NAE Website: Frontiers of Engineering. Retrieved 22 February 2011.
  15. ^ "Carbon nanotubes used to make batteries from fabrics". BBC News. 21 January 2010. Retrieved 27 April 2011. 
  16. ^ "Researchers One Step Closer to Building Synthetic Brain". Daily Tech. 25 April 2011. Retrieved 27 April 2011. 
  17. ^ "Pentagon Developing Shape-Shifting 'Transformers' for Battlefield". Fox News. 10 June 2009. Retrieved 26 April 2011. 
  18. ^ "Intel: Programmable matter takes shape". ZD Net. 22 August 2008. Retrieved 2 January 2012. 
  19. ^ "'Quantum dots' to boost performance of mobile cameras". BBC News. 22 March 2010. Retrieved 16 April 2011. 


  • Ashby, Michael; Hugh Shercliff; David Cebon (2007). Materials: engineering, science, processing and design (1st ed.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3. 
  • Askeland, Donald R.; Pradeep P. Phulé (2005). The Science & Engineering of Materials (5th ed.). Thomson-Engineering. ISBN 0-534-55396-6. 
  • Callister, Jr., William D. (2000). Materials Science and Engineering – An Introduction (5th ed.). John Wiley and Sons. ISBN 0-471-32013-7. 
  • Eberhart, Mark (2003). Why Things Break: Understanding the World by the Way It Comes Apart. Harmony. ISBN 1-4000-4760-9. 
  • Gaskell, David R. (1995). Introduction to the Thermodynamics of Materials (4th ed.). Taylor and Francis Publishing. ISBN 1-56032-992-0. 
  • Gordon, James Edward (1984). The New Science of Strong Materials or Why You Don't Fall Through the Floor (eissue ed.). Princeton University Press. ISBN 0-691-02380-8. 
  • Mathews, F.L. & Rawlings, R.D. (1999). Composite Materials: Engineering and Science. Boca Raton: CRC Press. ISBN 0-8493-0621-3. 
  • Lewis, P.R., Reynolds, K. & Gagg, C. (2003). Forensic Materials Engineering: Case Studies. Boca Raton: CRC Press. 
  • Wachtman, John B. (1996). Mechanical Properties of Ceramics. New York: Wiley-Interscience, John Wiley & Son's. ISBN 0-471-13316-7. 
  • Walker, P., ed. (1993). Chambers Dictionary of Materials Science and Technology. Chambers Publishing. ISBN 0-550-13249-X. 

Further reading[edit]

  • Timeline of Materials Science at The Minerals, Metals & Materials Society (TMS) – Accessed March 2007
  • Burns, G.; Glazer, A.M. (1990). Space Groups for Scientists and Engineers (2nd ed.). Boston: Academic Press, Inc. ISBN 0-12-145761-3. 
  • Cullity, B.D. (1978). Elements of X-Ray Diffraction (2nd ed.). Reading, Massachusetts: Addison-Wesley Publishing Company. ISBN 0-534-55396-6. 
  • Giacovazzo, C; Monaco HL; Viterbo D; Scordari F; Gilli G; Zanotti G; Catti M (1992). Fundamentals of Crystallography. Oxford: Oxford University Press. ISBN 0-19-855578-4. 
  • Green, D.J.; Hannink, R.; Swain, M.V. (1989). Transformation Toughening of Ceramics. Boca Raton: CRC Press. ISBN 0-8493-6594-5. 
  • Lovesey, S. W. (1984). Theory of Neutron Scattering from Condensed Matter; Volume 1: Neutron Scattering. Oxford: Clarendon Press. ISBN 0-19-852015-8. 
  • Lovesey, S. W. (1984). Theory of Neutron Scattering from Condensed Matter; Volume 2: Condensed Matter. Oxford: Clarendon Press. ISBN 0-19-852017-4. 
  • O'Keeffe, M.; Hyde, B.G. (1996). Crystal Structures; I. Patterns and Symmetry. Washington, DC: Mineralogical Society of America, Monograph Series. ISBN 0-939950-40-5. 
  • Squires, G.L. (1996). Introduction to the Theory of Thermal Neutron Scattering (2nd ed.). Mineola, New York: Dover Publications Inc. ISBN 0-486-69447-X. 
  • Young, R.A., ed. (1993). The Rietveld Method. Oxford: Oxford University Press & International Union of Crystallography. ISBN 0-19-855577-6. 

External links[edit]

Professional organizations[edit]

International conferences[edit]