Matrix geometric method

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In probability theory, the matrix geometric method is a method for the analysis of quasi-birth–death processes, continuous-time Markov chain whose transition rate matrices with a repetitive block structure.[1] The method was developed "largely by Marcel F. Neuts and his students starting around 1975."[2]

Method description[edit]

The method requires a transition rate matrix with tridiagonal block structure as follows

Q=\begin{pmatrix}
B_{00} & B_{01} \\
B_{10} & A_1 & A_2 \\
& A_0 & A_1 & A_2 \\
&& A_0 & A_1 & A_2 \\
&&& A_0 & A_1 & A_2 \\
&&&& \ddots & \ddots & \ddots
\end{pmatrix}

where each of B00, B01, B10, A0, A1 and A2 are matrices. To compute the stationary distribution π writing π Q = 0 the balance equations are considered for sub-vectors πi

\begin{align}
\pi_0 B_{00} + \pi_1 B_{10} &= 0\\
\pi_0 B_{01} + \pi_1 A_1 + \pi_2 A_0 &= 0\\
\pi_1 A_2 + \pi_2 A_1 + \pi_3 A_0 &= 0 \\
& \vdots  \\
\pi_{i-1} A_2 + \pi_i A_1 + \pi_{i+1} A_0 &= 0\\
& \vdots  \\
\end{align}

Observe that the relationship

\pi_i = \pi_1 R^{i-1}

holds where R is the Neut's rate matrix,[3] which can be computed numerically. Using this we write

\begin{align}
\begin{pmatrix}\pi_0 & \pi_1 \end{pmatrix}
\begin{pmatrix}B_{00} & B_{01} \\ B_{10} & A_1 + RA_0 \end{pmatrix}
= \begin{pmatrix} 0 & 0 \end{pmatrix}
\end{align}

which can be solve to find π0 and π1 and therefore iteratively all the πi.

Computation of R[edit]

The matrix R can be computed using cyclic reduction[4] or logarithmic reduction.[5][6]

Matrix analytic method[edit]

The matrix analytic method is a more complicated version of the matrix geometric solution method used to analyse models with block M/G/1 matrices.[7] Such models are harder because no relationship like πi = π1 Ri – 1 used above holds.[8]

External links[edit]

References[edit]

  1. ^ Harrison, Peter G.; Patel, Naresh M. (1992). Performance Modelling of Communication Networks and Computer Architectures. Addison-Wesley. pp. 317–322. ISBN 0-201-54419-9. 
  2. ^ Asmussen, S. R. (2003). "Random Walks". Applied Probability and Queues. Stochastic Modelling and Applied Probability 51. pp. 220–243. doi:10.1007/0-387-21525-5_8. ISBN 978-0-387-00211-8.  edit
  3. ^ Ramaswami, V. (1990). "A duality theorem for the matrix paradigms in queueing theory". Communications in Statistics. Stochastic Models 6: 151–161. doi:10.1080/15326349908807141.  edit
  4. ^ Bini, D.; Meini, B. (1996). "On the Solution of a Nonlinear Matrix Equation Arising in Queueing Problems". SIAM Journal on Matrix Analysis and Applications 17 (4): 906. doi:10.1137/S0895479895284804.  edit
  5. ^ Latouche, Guy; Ramaswami, V. (1993). "A Logarithmic Reduction Algorithm for Quasi-Birth-Death Processes". Journal of Applied Probability (Applied Probability Trust) 30 (3): 650–674. JSTOR 3214773.  edit
  6. ^ Pérez, J. F.; Van Houdt, B. (2011). "Quasi-birth-and-death processes with restricted transitions and its applications". Performance Evaluation 68 (2): 126. doi:10.1016/j.peva.2010.04.003.  edit
  7. ^ Alfa, A. S.; Ramaswami, V. (2011). "Matrix Analytic Method: Overview and History". Wiley Encyclopedia of Operations Research and Management Science. doi:10.1002/9780470400531.eorms0631. ISBN 9780470400531.  edit
  8. ^ Bolch, Gunter; Greiner, Stefan; de Meer, Hermann; Shridharbhai Trivedi, Kishor (2006). Queueing Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications (2 ed.). John Wiley & Sons, Inc. p. 259. ISBN 0471565253.