Measles virus encoding the human thyroidal sodium iodide symporter (MV-NIS)

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Measles virus encoding the human thyroidal sodium iodide symporter or MV-NIS is an attenuated oncolytic Edmonston (Ed) strain of measles virus.[1][2][3]

MV-NIS will attach and fuse to host tumor cell membranes. After fusion, MV-NIS has been observed to kill the tumor cells. Due to the unique properties of iodine uptake in these cells, iodine 123 (I-123) may be used to image MV-NIS-infected tumor cells. Non-invasive imaging provides confirmation of targeted infection and allows for monitoring and visualization of treatment progression.

The human CD46 antigen is known to be the functional cellular receptor for Measles virus.[4] This type 1 integral membrane glycoprotein is a normal part of human tissue but may be overexpressed on some cancer cell types.[2]

MV-NIS is the first targeted engineered virus therapy to have shown remission in published cancer clinical trials.[2][5]

PET/CT Imaging[edit]

A few days after infection, the host animal may be injected with radioiodine which is then selectively captured by infected cells and tumors. Detailed images may then be created showing the location of these infections and the target sites for tumor reduction monitoring.[6]

In the mouse model, non-invasive imaging and selective uptake have assisted in evidence for selective prostate cancer treatment.[7]

This imaging technique is an improvement over initial efforts to engineer a Measles virus to carry the soluble marker human carcinoembryonic antigen (CEA). The resultant strain, MV-CEA, could only be monitored by blood test which is not specific to areas of treatment.[8]

Example of PET scan after selective Iodine uptake

See also[edit]


  1. ^ "Drug Dictionary". Compass Oncology. Retrieved 21 August 2014. 
  2. ^ a b c Russell, Stephen J.; Mark J. Federspiel, Kah-Whye Peng, Caili Tong, David Dingli, William G. Morice, Val Lowe, Michael K. O'Connor, Robert A. Kyle, Nelson Leung, Francis K. Buadi, S. Vincent Rajkumar, Morie A. Gertz, Martha Q. Lacy, Angela Dispenzieri (2014-07-01). "Remission of Disseminated Cancer After Systemic Oncolytic Virotherapy". Mayo Clinic Proceedings 89 (7): 926–933. doi:10.1016/j.mayocp.2014.04.003. ISSN 0025-6196. PMID 24835528. Retrieved 2014-08-21. 
  3. ^ Dingli, David; Kah-Whye Peng, Mary E. Harvey, Philip R. Greipp, Michael K. O'Connor, Roberto Cattaneo, John C. Morris, Stephen J. Russell (2004-03-01). "Image-guided radiovirotherapy for multiple myeloma using a recombinant measles virus expressing the thyroidal sodium iodide symporter". Blood 103 (5): 1641–1646. doi:10.1182/blood-2003-07-2233. ISSN 0006-4971. PMID 14604966. 
  4. ^ Dörig, R. E.; A. Marcil; A. Chopra; C. D. Richardson (1993-10-22). "The human CD46 molecule is a receptor for measles virus (Edmonston strain)". Cell 75 (2): 295–305. ISSN 0092-8674. PMID 8402913. 
  5. ^ Bonander, Ross. "Engineered Measles Virus Puts Myeloma Patient Into Remission". Retrieved 22 August 2014. 
  6. ^ Russell, Stephen J. "Oncolytic Virotherapy for Multiple Myeloma Oncolytic Virotherapy for Multiple Myeloma". Mayo Clinic. Retrieved 21 August 2014. 
  7. ^ Msaouel, Pavlos; Ianko D. Iankov; Cory Allen; Ileana Aderca; Mark J. Federspiel; Donald J. Tindall; John C. Morris; Michael Koutsilieris; Stephen J. Russell; Evanthia Galanis (2009-12). "Noninvasive Imaging and Radiovirotherapy of Prostate Cancer Using an Oncolytic Measles Virus Expressing the Sodium Iodide Symporter". Molecular Therapy 17 (12): 2041–2048. doi:10.1038/mt.2009.218. ISSN 1525-0016. Retrieved 2014-08-21. 
  8. ^ "Update on the measles virus, a novel therapy for glioblastoma". Mayo Clinic. Retrieved 22 August 2014. 

External links[edit]