Meat

From Wikipedia, the free encyclopedia
Jump to: navigation, search
For other uses, see Meat (disambiguation).
Varieties of meat
While meat consumption in most industrialized countries is high but stagnating...[1]
... meat consumption in emerging economies is on the rise.[2]

Meat is animal flesh that is eaten as food.[3]:1 Humans are omnivorous,[4][5][6] and have hunted and killed animals for meat since prehistoric times.[6] The advent of civilization allowed the domestication of animals such as chickens, sheep, pigs and cattle, and eventually their use in meat production on an industrial scale.

Meat is mainly composed of water and protein, and is usually eaten together with other food. It is edible raw, but is normally eaten after it has been cooked and seasoned or processed in a variety of ways. Unprocessed meat will spoil within hours or days. Spoilage is caused by the practically unavoidable infection and subsequent decomposition of meat by bacteria and fungi, which are borne by the animal itself, by the people handling the meat, and by their implements.

Meat consumption varies worldwide, depending on cultural or religious preferences, as well as economic conditions. Vegetarians choose not to eat meat because of ethical, economic, environmental, religious or health concerns that are associated with meat production and consumption.

Most often, meat refers to skeletal muscle and associated fat and other tissues, but it may also describe other edible tissues such as offal.[3]:1 Conversely, meat is sometimes used in a more restrictive sense – the flesh of mammalian species (pigs, cattle, lambs, etc.) raised and prepared for human consumption, to the exclusion of fish and other seafood, poultry or other animals.[7][8]

Etymology[edit]

The word meat comes from the Old English word mete, which referred to food in general. The term is related to mad in Danish, mat in Swedish and Norwegian, and matur in Icelandic and Faroese, which also mean 'food'. The word mete also exists in Old Frisian (and to a lesser extent, modern West Frisian) to denote important food, differentiating it from swiets (sweets) and dierfied (animal feed).

History[edit]

Paleontological evidence suggests that meat constituted a substantial proportion of the diet of even the earliest humans.[3]:2 Early hunter-gatherers depended on the organized hunting of large animals such as bison and deer.[3]:2

The domestication of animals, of which we have evidence dating back to the end of the last glacial period (c. 10,000 BC),[3]:2 allowed the systematic production of meat and the breeding of animals with a view to improving meat production.[3]:2 The animals which are now the principal sources of meat were domesticated in conjunction with the development of early civilizations:

A typical shoulder cut of lamb
  • Sheep, originating from western Asia, were domesticated with the help of dogs prior to the establishment of settled agriculture, likely as early as the 8th millennium BC.[3]:3 Several breeds of sheep were established in ancient Mesopotamia and Egypt by 3500–3000 BC.[3]:3 Presently, more than 200 sheep breeds exist.
  • Cattle were domesticated in Mesopotamia after settled agriculture was established about 5000 BC,[3]:5 and several breeds were established by 2500 BC.[3]:6 Modern domesticated cattle fall into the groups Bos taurus (European cattle) and Bos indicus (zebu), both descended from the now-extinct aurochs.[3]:5 The breeding of beef cattle, cattle optimized for meat production as opposed to animals best suited for draught or dairy purposes, began in the middle of the 18th century.[3]:7
A Hereford bull, a breed of cattle frequently used in beef production.
  • Domestic pigs, which are descended from wild boars, are known to have existed about 2500 BC in modern-day Hungary and in Troy; earlier pottery from Jericho and Egypt depicts wild pigs.[3]:8 Pork sausages and hams were of great commercial importance in Greco-Roman times.[3]:8 Pigs continue to be bred intensively as they are being optimized to produce meat best suited for specific meat products.[3]:9

Other animals are or have been raised or hunted for their flesh. The type of meat consumed varies much between different cultures, changes over time, depending on factors such as tradition and the availability of the animals. The amount and kind of meat consumed also varies by income, both between countries and within a given country.[9]

Modern agriculture employs a number of techniques, such as progeny testing, to make animals evolve rapidly to acquire the qualities desired by meat producers.[3]:10 For instance, in the wake of well-publicised health concerns associated with saturated fats in the 1980s, the fat content of United Kingdom beef, pork and lamb fell from 20–26 percent to 4–8 percent within a few decades, due to both selective breeding for leanness and changed methods of butchery.[3]:10 Methods of genetic engineering aimed at improving the meat production qualities of animals are now also becoming available.[3]:14

Even though it is a very old industry, meat production continues to be shaped strongly by the evolving demands of customers. The trend towards selling meat in pre-packaged cuts has increased the demand for larger breeds of cattle, which are better suited to producing such cuts.[3]:11 Even more animals not previously exploited for their meat are now being farmed, especially the more agile and mobile species, whose muscles tend to be developed better than those of cattle, sheep or pigs.[3]:11 Examples are the various antelope species, the zebra, water buffalo and camel,[3]:11ff as well as non-mammals, such as the crocodile, emu and ostrich.[3]:13 Another important trend in contemporary meat production is organic farming which, while providing no organoleptic benefit to meat so produced,[24] meets an increasing demand for organic meat.[citation needed]

Growth and development of meat animals[edit]

Agricultural science has identified several factors bearing on the growth and development of meat in animals.

Genetics[edit]

Trait Heritability[25]
Reproductive efficiency 2–10%
Meat quality 15–30%
Growth 20–40%
Muscle/fat ratio 40–60%

Several economically important traits in meat animals are heritable to some degree (see the table to the right) and can thus be selected for by animal breeding. In cattle, certain growth features are controlled by recessive genes which have not so far been controlled, complicating breeding.[3]:18 One such trait is dwarfism; another is the doppelender or "double muscling" condition, which causes muscle hypertrophy and thereby increases the animal's commercial value.[3]:18 Genetic analysis continues to reveal the genetic mechanisms that control numerous aspects of the endocrine system and, through it, meat growth and quality.[3]:19

Genetic engineering techniques can shorten breeding programmes significantly because they allow for the identification and isolation of genes coding for desired traits, and for the reincorporation of these genes into the animal genome.[3]:21 To enable such manipulation, research is ongoing (as of 2006) to map the entire genome of sheep, cattle and pigs.[3]:21 Some research has already seen commercial application. For instance, a recombinant bacterium has been developed which improves the digestion of grass in the rumen of cattle, and some specific features of muscle fibres have been genetically altered.[3]:22

Experimental reproductive cloning of commercially important meat animals such as sheep, pig or cattle has been successful. The multiple asexual reproduction of animals bearing desirable traits can thus be anticipated,[3]:22 although this is not yet practical on a commercial scale.

Environment[edit]

Heat regulation in livestock is of great economic significance, because mammals attempt to maintain a constant optimal body temperature. Low temperatures tend to prolong animal development and high temperatures tend to retard it.[3]:22 Depending on their size, body shape and insulation through tissue and fur, some animals have a relatively narrow zone of temperature tolerance and others (e.g. cattle) a broad one.[3]:23 Static magnetic fields, for reasons still unknown, also retard animal development.[3]:23

Nutrition[edit]

The quality and quantity of usable meat depends on the animal's plane of nutrition, i.e., whether it is over- or underfed. Scientists disagree, however, about how exactly the plane of nutrition influences carcase composition.[3]:25

The composition of the diet, especially the amount of protein provided, is also an important factor regulating animal growth.[3]:26 Ruminants, which may digest cellulose, are better adapted to poor-quality diets, but their ruminal microorganisms degrade high-quality protein if supplied in excess.[3]:27 Because producing high-quality protein animal feed is expensive (see also Environmental impact below), several techniques are employed or experimented with to ensure maximum utilization of protein. These include the treatment of feed with formalin to protect amino acids during their passage through the rumen, the recycling of manure by feeding it back to cattle mixed with feed concentrates, or the partial conversion of petroleum hydrocarbons to protein through microbial action.[3]:30

In plant feed, environmental factors influence the availability of crucial nutrients or micronutrients, a lack or excess of which can cause a great many ailments.[3]:29 In Australia, for instance, where the soil contains limited phosphate, cattle are being fed additional phosphate to increase the efficiency of beef production.[3]:28 Also in Australia, cattle and sheep in certain areas were often found losing their appetite and dying in the midst of rich pasture; this was at length found to be a result of cobalt deficiency in the soil.[3]:29 Plant toxins are also a risk to grazing animals; for instance, sodium fluoracetate, found in some African and Australian plants, kills by disrupting the cellular metabolism.[3]:29 Certain man-made pollutants such as methylmercury and some pesticide residues present a particular hazard due to their tendency to bioaccumulate in meat, potentially poisoning consumers.[3]:30

Human intervention[edit]

Meat producers may seek to improve the fertility of female animals through the administration of gonadotrophic or ovulation-inducing hormones.[3]:31 In pig production, sow infertility is a common problem, possibly due to excessive fatness.[3]:32 No methods currently exist to augment the fertility of male animals.[3]:32 Artificial insemination is now routinely used to produce animals of the best possible genetic quality, and the efficiency of this method is improved through the administration of hormones that synchronize the ovulation cycles within groups of females.[3]:33

Growth hormones, particularly anabolic agents such as steroids, are used in some countries to accelerate muscle growth in animals.[3]:33 This practice has given rise to the beef hormone controversy, an international trade dispute. It may also decrease the tenderness of meat, although research on this is inconclusive,[3]:35 and have other effects on the composition of the muscle flesh.[3]:36ff Where castration is used to improve control over male animals, its side effects are also counteracted by the administration of hormones.[3]:33

Sedatives may be administered to animals to counteract stress factors and increase weight gain.[3]:39 The feeding of antibiotics to certain animals has been shown to improve growth rates also.[3]:39 This practice is particularly prevalent in the USA, but has been banned in the EU, partly because it causes antibiotic resistance in pathogenic microorganisms.[3]:39

Biochemical composition[edit]

Numerous aspects of the biochemical composition of meat vary in complex ways depending on the species, breed, sex, age, plane of nutrition, training and exercise of the animal, as well as on the anatomical location of the musculature involved.[3]:94–126 Even between animals of the same litter and sex there are considerable differences in such parameters as the percentage of intramuscular fat.[3]:126

Main constituents[edit]

Adult mammalian muscle flesh consists of roughly 75 percent water, 19 percent protein, 2.5 percent intramuscular fat, 1.2 percent carbohydrates and 2.3 percent other soluble non-protein substances. These include nitrogenous compounds, such as amino acids, and inorganic substances such as minerals.[3]:76

Muscle proteins are either soluble in water (sarcoplasmic proteins, about 11.5 percent of total muscle mass) or in concentrated salt solutions (myofibrillar proteins, about 5.5 percent of mass).[3]:75 There are several hundred sarcoplasmic proteins.[3]:77 Most of them – the glycolytic enzymes – are involved in the glycolytic pathway, i.e., the conversion of stored energy into muscle power.[3]:78 The two most abundant myofibrillar proteins, myosin and actin,[3]:79 are responsible for the muscle's overall structure. The remaining protein mass consists of connective tissue (collagen and elastin) as well as organelle tissue.[3]:79

Fat in meat can be either adipose tissue, used by the animal to store energy and consisting of "true fats" (esters of glycerol with fatty acids),[3]:82 or intramuscular fat, which contains considerable quantities of phospholipids and of unsaponifiable constituents such as cholesterol.[3]:82

Red and white meat[edit]

Blade steaks are an example of "red" meat.

Meat can be broadly classified as "red" or "white" depending on the concentration of myoglobin in muscle fibre. When myoglobin is exposed to oxygen, reddish oxymyoglobin develops, making myoglobin-rich meat appear red. The redness of meat depends on species, animal age, and fibre type: Red meat contains more narrow muscle fibres that tend to operate over long periods without rest,[3]:93 while white meat contains more broad fibres that tend to work in short fast bursts.[3]:93

Generally, the meat of adult mammals such as cows, sheep, goats, and horses is considered red, while chicken and turkey breast meat is considered white.[citation needed]

Nutritional information[edit]

Typical nutritional content of
110 grams (4 oz or .25 lb) of meat
Source calories protein carbs fat
fish 110–140 20–25 g 0 g 1–5 g
chicken breast 160 28 g 0 g 7 g
lamb 250 30 g 0 g 14 g
steak (beef top round) 210 36 g 0 g 7 g
steak (beef T-bone) 450 25 g 0 g 35 g

All muscle tissue is very high in protein, containing all of the essential amino acids, and in most cases is a good source of zinc, vitamin B12, selenium, phosphorus, niacin, vitamin B6, choline, riboflavin and iron.[26] Several forms of meat are high in vitamin K2,[27] with natto having the highest concentration.[27] Muscle tissue is very low in carbohydrates and does not contain dietary fiber.[28] The fat content of meat can vary widely depending on the species and breed of animal, the way in which the animal was raised, including what it was fed, the anatomical part of the body, and the methods of butchering and cooking. Wild animals such as deer are typically leaner than farm animals, leading those concerned about fat content to choose game such as venison. Decades of breeding meat animals for fatness is being reversed by consumer demand for meat with less fat.

The table in this section compares the nutritional content of several types of meat. While each kind of meat has about the same content of protein and carbohydrates, there is a very wide range of fat content.

Production[edit]

Big business: The Top Ten of the international meat industry

Meat is produced by killing an animal and cutting flesh out of it. These procedures are called slaughter and butchery, respectively. There is ongoing research into producing meat in vitro, that is, outside of animals.

Attesting to the long history of meat consumption in human civilizations, ritual slaughter has become part of the practice of several religions. These rituals, as well as other pre-industrial meat production methods such as these used by indigenous peoples, are not detailed here. This section will instead provide an overview of contemporary industrialized meat production in dedicated slaughterhouses from cattle, sheep and pigs.

Transport[edit]

Upon reaching a predetermined age or weight, livestock are usually transported en masse to the slaughterhouse. Depending on its length and circumstances, this may exert stress and injuries on the animals, and some may die en route.[3]:129 Unnecessary stress in transport may adversely affect the quality of the meat.[3]:129 In particular, the muscles of stressed animals are low in water and glycogen, and their pH fails to attain acidic values, all of which results in poor meat quality.[3]:130 Consequently, and also due to campaigning by animal welfare groups, laws and industry practices in several countries tend to become more restrictive with respect to the duration and other circumstances of livestock transports.

Slaughter[edit]

Animals are usually slaughtered by being first stunned and then exsanguinated (bled out). Death results from the one or the other procedure, depending on the methods employed. Stunning can be effected through asphyxiating the animals with carbon dioxide, shooting them with a gun or a captive bolt pistol, or shocking them with electric current.[3]:134ff In most forms of ritual slaughter, stunning is not allowed.

Draining as much blood as possible from the carcase is necessary because blood causes the meat to have an unappealing appearance and is a breeding ground for microorganisms.[3]:1340 The exsanguination is accomplished by severing the carotid artery and the jugular vein in cattle and sheep, and the anterior vena cava in pigs.[3]:137

Dressing and cutting[edit]

After exsanguination, the carcass is dressed; that is, the head, feet, hide (except hogs and some veal), excess fat, viscera and offal are removed, leaving only bones and edible muscle.[3]:138 Cattle and pig carcases, but not those of sheep, are then split in half along the mid ventral axis, and the carcase is cut into wholesale pieces.[3]:138 The dressing and cutting sequence, long a province of manual labor, is progressively being fully automated.[3]:138

Conditioning[edit]

In the meat products sector of the Rungis International Market, France.

Under hygienic conditions and without other treatment, meat can be stored at above its freezing point (–1.5 °C) for about six weeks without spoilage, during which time it undergoes an aging process that increases its tenderness and flavor.[3]:141

During the first day after death, glycolysis continues until the accumulation of lactic acid causes the pH to reach about 5.5. The remaining glycogen, about 18 g per kg, is believed to increase the water-holding capacity and tenderness of the flesh when cooked.[3]:87 Rigor mortis sets in a few hours after death as ATP is used up, causing actin and myosin to combine into rigid actomyosin and lowering the meat's water-holding capacity,[3]:90 causing it to lose water ("weep").[3]:146 In muscles that enter rigor in a contracted position, actin and myosin filaments overlap and cross-bond, resulting in meat that is tough on cooking[3]:144 – hence again the need to prevent pre-slaughter stress in the animal.

Over time, the muscle proteins denature in varying degree, with the exception of the collagen and elastin of connective tissue,[3]:142 and rigor mortis resolves. Because of these changes, the meat is tender and pliable when cooked just after death or after the resolution of rigor, but tough when cooked during rigor.[3]:142 As the muscle pigment myoglobin denatures, its iron oxidates, which may cause a brown discoloration near the surface of the meat.[3]:146 Ongoing proteolysis also contributes to conditioning. Hypoxanthine, a breakdown product of ATP, contributes to the meat's flavor and odor, as do other products of the discomposition of muscle fat and protein.[3]:155

Additives[edit]

When meat is industrially processed in preparation of consumption, it may be enriched with additives to protect or modify its flavor or color, to improve its tenderness, juiciness or cohesiveness, or to aid with its preservation. Meat additives include the following:[29]

Spoilage and preservation[edit]

Main articles: Meat spoilage and Meat preservation

The spoilage of meat occurs, if untreated, in a matter of hours or days and results in the meat becoming unappetizing, poisonous or infectious. Spoilage is caused by the practically unavoidable infection and subsequent decomposition of meat by bacteria and fungi, which are borne by the animal itself, by the people handling the meat, and by their implements. Meat can be kept edible for a much longer time – though not indefinitely – if proper hygiene is observed during production and processing, and if appropriate food safety, food preservation and food storage procedures are applied. Without the application of preservatives and stabilizers, the fats in meat may also begin to rapidly decompose after cooking or processing, leading to an objectionable taste known as warmed over flavor.

Methods of preparation[edit]

A spit barbecue at a street fair in New York City's East Village.

Fresh meat can be cooked for immediate consumption, or be processed, that is, treated for longer-term preservation and later consumption, possibly after further preparation. Fresh meat cuts or processed cuts may produce iridescence, commonly thought to be due to spoilage but actually caused structural coloration and diffraction of the light.[30] A common additive to processed meats, both for preservation and because it prevents discoloring, is sodium nitrite, which, however, is also a source of health concerns, because it may form carcinogenic nitrosamines when heated.[31]

Meat is prepared in many ways, as steaks, in stews, fondue, or as dried meat like beef jerky. It may be ground then formed into patties (as hamburgers or croquettes), loaves, or sausages, or used in loose form (as in "sloppy joe" or Bolognese sauce).

Pork ribs being smoked

Some meat is cured by smoking, which is the process of flavoring, cooking, or preserving food by exposing it to the smoke from burning or smoldering plant materials, most often wood. In Europe, alder is the traditional smoking wood, but oak is more often used now, and beech to a lesser extent. In North America, hickory, mesquite, oak, pecan, alder, maple, and fruit-tree woods are commonly used for smoking. Meat can also be cured by pickling, preserving in salt or brine (see salted meat and other curing methods). Other kinds of meat are marinated and barbecued, or simply boiled, roasted, or fried.

Meat is generally eaten cooked, but many recipes call for raw beef, veal or fish (tartare). Steak tartare is a meat dish made from finely chopped or minced raw beef or horse meat.[32][33] Meat is often spiced or seasoned, particularly with meat products such as sausages. Meat dishes are usually described by their source (animal and part of body) and method of preparation (e.g., a beef rib).

Meat is a typical base for making sandwiches. Popular varieties of sandwich meat include ham, pork, salami and other sausages, and beef, such as steak, roast beef, corned beef, pepperoni, and pastrami. Meat can also be molded or pressed (common for products that include offal, such as haggis and scrapple) and canned.

Issues[edit]

Fresh meat in a Mexican supermarket
Kangaroo meat at an Australian supermarket

Meat is part of the human diet in most cultures. Many people, however, choose not to eat meat (this is referred to as vegetarianism) or any food made from animals (veganism). The reasons for not eating all or some meat may include ethical objections to killing animals for food, health concerns, environmental concerns or religious dietary laws.

Ethics of eating meat[edit]

Main article: Ethics of eating meat

Ethical issues regarding the consumption of meat can include objections to the act of killing animals or to the agricultural practices used in meat production. Reasons for objecting to killing animals for consumption may include animal rights, environmental ethics, or an aversion to inflicting pain or harm on other sentient creatures. Some people, while not vegetarians, refuse to eat the flesh of certain animals, such as cats, dogs, horses, or rabbits, due to cultural or religious taboos. In some cases, specific meats (especially from pigs and cows) are forbidden within religious traditions.

Some people eat only the flesh of animals which they believe have not been mistreated, and abstain from the meat of animals reared in factory farms or from particular products such as foie gras and veal. Some people also abstain from milk and its derivatives because the production of veal is a byproduct of the dairy industry. The ethical issues with factory farming relate to the high concentration of animals, animal waste, and the potential for dead animals in a small space. Critics argue that some techniques used in intensive agriculture can be cruel to animals. Foie gras is a food product made of the liver of ducks or geese that has been specially fattened by force feeding them corn. Veal is criticised because the veal calves may be highly restricted in movement; have unsuitable flooring; spend their entire lives indoors; experience prolonged sensory, social, and exploratory deprivation; and are more susceptible to high amounts of stress and disease.[34]

Religious traditions[edit]

The religion of Jainism has always opposed eating meat, and there are also schools of Buddhism, and Hinduism that condemn the eating of meat. Jewish dietary rules (Kashrut) allow certain (kosher) meat and forbid other (treif). Among the numerous laws that form part of kashrut are the prohibitions on the consumption of unclean animals (such as pork, shellfish (both Mollusca and Crustacea) and most insects) and mixtures of meat and milk. Similar rules apply in Islamic dietary laws. According to the Quran, the only foods explicitly forbidden are meat from animals that die of themselves, blood, the meat of swine (porcine animals, pigs), and animals dedicated to other than Allah (either undedicated or dedicated to idols).In Sikhism only Kutha meat is forbidden and the proscribed method of killing is Jhatka, however there are sects that oppose eating meat.[35]

Health[edit]

A study of 400,000 subjects conducted by the European Prospective Investigation into Cancer and Nutrition and published in 2013 showed "a moderate positive association between processed meat consumption and mortality, in particular due to cardiovascular diseases, but also to cancer."[36]

A 1999 metastudy combined data from five studies from western countries. The metastudy reported mortality ratios, where lower numbers indicated fewer deaths, for fish eaters to be 0.82, vegetarians to be 0.84, occasional meat eaters to be 0.84. Regular meat eaters and vegans shared the highest mortality ratio of 1.00. [37]

In response to changing prices as well as health concerns about saturated fat and cholesterol, consumers have altered their consumption of various meats. A USDA report points out that consumption of beef in the United States between 1970–1974 and 1990–1994 dropped by 21%, while consumption of chicken increased by 90%.[38] During the same period of time, the price of chicken dropped by 14% relative to the price of beef. In 1995 and 1996, beef consumption increased due to higher supplies and lower prices.

Cancer[edit]

In recent years, health concerns have been raised about the consumption of meat increasing the risk of cancer.[39] In particular, red meat and processed meat were found to be associated with higher risk of cancers of the lung, esophagus, liver, and colon, among others, although also a reduced risk for some minor type of cancers.[39] Another study found an increase risk of pancreatic cancer for red meat and pork. However that study noted "Carcinogenic substances related to meat preparation methods might be responsible for the positive association" meaning that it is not the meat itself that is the issue but rather the additives[40] That study also suggests that fat and saturated fat are not likely contributors to pancreatic cancer. Animal fat, particularly from ruminants, tends to have a higher percentage of saturated fat vs. monounsaturated and polyunsaturated fat when compared to vegetable fats, with the exception of some tropical plant fats;[41] consumption of which has been correlated with various health problems. The saturated fat found in meat has been associated with significantly raised risks of colon cancer,[42][43] although evidence suggests that risks of prostate cancer are unrelated to animal fat consumption.[44]

However, many research papers do not support significant links between meat consumption and various cancers. Key et al. found that "There were no significant differences between vegetarians and nonvegetarians in mortality from cerebrovascular disease, stomach cancer, colorectal cancer, lung cancer, breast cancer, prostate cancer or all other causes combined."[45] Truswell reviewed numerous studies, concluding that the relationship of colorectal cancer with meat consumption appeared weaker than the "probable" status it had been given by the World Cancer Research Foundation in 1997.[46] A study by Chao et al. (2005) found an apparent association of colorectal cancer with red meat consumption after adjustment for age and energy intake. However, after further adjustment for body mass index, cigarette smoking and other covariates, no association with red meat consumption was found.[47] Alexander conducted a meta-analysis which found no association of colorectal cancer with consumption of animal fat or protein.[48] Based on European data (EPIC-Oxford study), Key et al. found that incidence of colorectal cancer was somewhat lower among meat eaters than among vegetarians.[49] A study within the European Prospective Investigation into Cancer and Nutrition found that association between esophageal cancer risk and total and processed meat intake was not statistically significant.[50] The dissimilar findings indicate that caution is needed in considering claims of dietary links to cancer occurrence.

Heart disease[edit]

The correlation of meat consumption to increased risk of heart disease is controversial. Some studies fail to find a link between red meat consumption and heart disease[51] (although the same study found statistically significant correlation between the consumption of processed meat and cancer), while another study, a survey, conducted in 1960, of 25,153 California Seventh-Day Adventists, found that the risk of heart disease is three times greater for 45-64 year old men who eat meat daily, versus those who did not eat meat.[52] A major Harvard University study [53] in 2010 involving over one million people who ate meat found that only processed meat had an adverse risk in relation to coronary heart disease. The study suggests that eating 50g (less than 2oz) of processed meat per day increases risk of coronary heart disease by 42%, and diabetes by 19%. Equivalent levels of fat, including saturated fats, in unprocessed meat (even when eating twice as much per day) did not show any deleterious effects, leading the researchers to suggest that "differences in salt and preservatives, rather than fats, might explain the higher risk of heart disease and diabetes seen with processed meats, but not with unprocessed red meats."

Bacterial contamination[edit]

A 2011 study by the Translational Genomics Research Institute showed that nearly half (47%) of the meat and poultry in U.S. grocery stores were contaminated with S. aureus, with more than half (52%) of those bacteria resistant to antibiotics.[54]

Cooking[edit]

Meat can transmit certain diseases, but complete cooking and avoiding recontamination reduces this possibility.[55]

Several studies published since 1990 indicate that cooking muscle meat creates heterocyclic amines (HCAs), which are thought to increase cancer risk in humans. Researchers at the National Cancer Institute published results of a study which found that human subjects who ate beef rare or medium-rare had less than one third the risk of stomach cancer than those who ate beef medium-well or well-done.[56] While eating muscle meat raw may be the only way to avoid HCAs fully, the National Cancer Institute states that cooking meat below 212 °F (100 °C) creates "negligible amounts" of HCAs. Also, microwaving meat before cooking may reduce HCAs by 90%.[57]

Nitrosamines, present in processed and cooked foods, have been noted as being carcinogenic, being linked to colon cancer. Also, toxic compounds called PAHs, or polycyclic aromatic hydrocarbons, present in processed, smoked and cooked foods, are known to be carcinogenic.[58]

Environmental impact[edit]

Various environmental effects are associated with meat production. Among these are greenhouse gas emissions, fossil energy use, water use, water quality changes, and effects on grazed ecosystems. The occurrence, nature and significance of these effects varies among livestock production systems.[59] Grazing of livestock can be beneficial for some wildlife species, but not for others.[60][61] Targeted grazing of livestock is used as a food-producing alternative to herbicide use in some vegetation management.[62] Meat-producing livestock can provide environmental benefits through waste reduction, e.g. conversion of human-inedible residues of food crops.[63][64] Manure from meat-producing livestock is used as fertilizer; it may be composted before application to food crops. Substitution of animal manures for synthetic fertilizers in crop production can be environmentally significant, as between 43 and 88 MJ of fossil fuel energy are used per kg of nitrogen in manufacture of synthetic nitrogenous fertilizers.[65]

Imitation meat[edit]

Various forms of imitation meat have been created for people who wish not to eat meat but still want to taste its flavor and texture. Meat imitates are typically some form of processed soybean (tofu, tempeh), but they can also be based on wheat gluten or even fungi ( quorn).

Misidentification[edit]

With the rise of complex supply chains, including cold chains, in developed economies, the distance between the farmer or fisherman and customer has grown, increasing the possibility for intentional and unintentional misidentification of meat at various points in the supply chain.[66]

In 2013, reports emerged across Europe that products labelled as containing beef actually contained horse meat.[67][68] In February 2013 a study was published showing that about one-third of raw fish are misidentified across the United States.[66]

See also[edit]

References[edit]

  1. ^ Meat Atlas 2014 – Facts and figures about the animals we eat , page 46, download as pdf
  2. ^ Meat Atlas 2014 – Facts and figures about the animals we eat , page 48, download as pdf
  3. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv bw bx by bz ca cb cc cd Lawrie, R. A.; Ledward, D. A. (2006). Lawrie’s meat science (7th ed.). Cambridge: Woodhead Publishing Limited. ISBN 978-1-84569-159-2. 
  4. ^ Robert E. C. Wildman, Denis M. Medeiros (2000). Advanced Human Nutrition. CRC Press. p. 37. ISBN 0849385660. Retrieved October 6, 2013. 
  5. ^ Robert Mari Womack (2010). The Anthropology of Health and Healing. Rowman & Littlefield. p. 243. ISBN 0759110441. Retrieved October 6, 2013. 
  6. ^ a b McArdle, John. "Humans are Omnivores". Vegetarian Resource Group. Retrieved October 6, 2013. 
  7. ^ "Meat". Collins English Dictionary. Retrieved September 24, 2013. 
  8. ^ "Meat". Merriam-Webster. Retrieved September 24, 2013. 
  9. ^ Mark Gehlhar and William Coyle, "Global Food Consumption and Impacts on Trade Patterns", Chapter 1 in Changing Structure of Global Food Consumption and Trade, edited by Anita Regmi, May 2001. USDA Economic Research Service.
  10. ^ Chrisafis, Angelique "France's horsemeat lovers fear US ban The Guardian, June 15, 2007, London.
  11. ^ Alan Davidson (2006). Tom Jaine, Jane Davidson and Helen Saberi. ed. The Oxford Companion to Food. Oxford: Oxford University Press. ISBN 0-19-280681-5, pp. 387-388
  12. ^ Turner, E. 2005. "Results of a recent analysis of horse remains dating to the Magdalenian period at Solutre, France," pp 70-89. In Mashkour, M (ed.). Equids in Time and Space. Oxford: Oxbow
  13. ^ Rupert Wingfield-Hayes (June 29, 2002). "China's taste for the exotic". BBC News. http://news.bbc.co.uk/2/hi/programmes/from_our_own_correspondent/2074073.stm. Retrieved May 15, 2007.
  14. ^ Podberscek, A. L. (2009). "Good to Pet and Eat: The Keeping and Consuming of Dogs and Cats in South Korea" (PDF). Journal of Social Issues 65 (3): 615. doi:10.1111/j.1540-4560.2009.01616.x.  edit
  15. ^ "Vietnam's dog meat tradition". BBC News. December 31, 2001. http://news.bbc.co.uk/2/hi/asia-pacific/1735647.stm. Retrieved May 15, 2007."Vietnam's dog meat tradition". BBC News. December 31, 2001. http://news.bbc.co.uk/2/hi/asia-pacific/1735647.stm. Retrieved 2007-05-15.
  16. ^ Francis H. Fay (June 1960) "Carnivorous walrus and some arctic zoonoses". Arctic 13, no.2: 111-122. http://arctic.synergiesprairies.ca/arctic/index.php/arctic/article/viewFile/3691/3666
  17. ^ Schwabe, Calvin W. (1979). Unmentionable cuisine. University of Virginia Press. p. 168. ISBN 978-0-8139-1162-5. http://books.google.com/books?id=SiBntk9jGmoC.
  18. ^ Hanley, Susan B. (1999). Everyday things in premodern Japan: the hidden legacy of material culture. University of California Press. p. 66. ISBN 0-520-21812-4. http://books.google.com/?id=f7E5a9CIploC&pg=PA66&dq=dog#v=onepage&q=dog.
  19. ^ Schwabe, Calvin W. (1979). Unmentionable cuisine. University of Virginia Press. p. 173. ISBN 978-0-8139-1162-5. http://books.google.com/books?id=SiBntk9jGmoC.
  20. ^ Alan Davidson (2006). Tom Jaine, Jane Davidson and Helen Saberi. ed. The Oxford Companion to Food. Oxford: Oxford University Press. ISBN 0-19-280681-5, pp. 491
  21. ^ "Carapulcra de gato y gato a la parrilla sirven en fiesta patronal". Cronica Viva. Retrieved December 1, 2011. 
  22. ^ "A Guinea Pig for All Times and Seasons". The Economist. July 15, 2004. Retrieved December 1, 2011. 
  23. ^ "WHALING IN LAMALERA-FLORES". Retrieved April 10, 2013. 
  24. ^ Lawrie, 11, citing Ollson, V., Andersson, I., Ranson, K., Lundström, K. (2003) Meat Sci. 64, 287 and noting also that organically reared pigs "compare unfavourably" with conventionally reared ones "in some respects."
  25. ^ Table adapted from Lawrie, 17.
  26. ^ http://www.beef.org/uDocs/whatyoumisswithoutmeat638.pdf
  27. ^ a b Schurgers, L. J.; Vermeer, C. (2000). "Determination of phylloquinone and menaquinones in food. Effect of food matrix on circulating vitamin K concentrations". Haemostasis 30 (6): 298–307. PMID 11356998.  edit
  28. ^ "Dietary Fiber". Ext.colostate.edu. Retrieved May 1, 2010. 
  29. ^ a b c d e f g h i j k l Mills, E. (2004). "Additives". Encyclopedia of meat sciences (1st ed.). Oxford: Elsevier. pp. 1–6. ISBN 978-0124649705. 
  30. ^ Martinez-Hurtado, J L (November 2013). "Foods". Iridescence in Meat Caused by Surface Gratings 2 (2): 499–506. doi:10.3390/foods2040499. Retrieved March 1, 2014. 
  31. ^ Ronald B. Pegg; Fereidoon Shahidi (2004). Nitrite Curing of Meat: The N-Nitrosamine Problem and Nitrite Alternatives. John Wiley & Sons. ISBN 0-917678-50-8. 
  32. ^ Waxman, Jonathan; Steele, Tom; Flay, Bobby; Kernick, John (2007). A Great American Cook: Recipes from the Home Kitchen of One of Our Most Influential Chefs. Houghton Mifflin Harcourt. ISBN 0-618-65852-1. 
  33. ^ Raymond Sokolov, The Cook's Canon, 2003, ISBN 0-06-008390-5, p. 183 at Google Books
  34. ^ http://www.hsus.org/farm/resources/research/welfare/welfare_veal_calves.html
  35. ^ Takhar, Opinderjit Kaur (2005). "2 Guru Nanak Nishkam Sewak Jatha". Sikh identity: an exploration of groups among Sikhs. Ashgate Publishing, Ltd. p. 51. ISBN 978-0-7546-5202-1. Retrieved November 26, 2010. 
  36. ^ European Prospective Investigation into Cancer and Nutrition; Sabine Rohrmann, Kim Overvad, H Bas Bueno-de-Mesquita, Marianne U Jakobsen, Rikke Egeberg, Anne Tjønneland, Laura Nailler, Marie-Christine Boutron-Ruault, Françoise Clavel-Chapelon, Vittorio Krogh, Domenico Palli, Salvatore Panico, Rosario Tumino, Fulvio Ricceri, Manuela M Bergmann, Heiner Boeing, Kuanrong Li, Rudolf Kaaks, Kay-Tee Khaw, Nicholas J Wareham, Francesca L Crowe, Timothy J Key, Androniki Naska, Antonia Trichopoulou, Dimitirios Trichopoulos, Max Leenders, Petra HM Peeters, Dagrun Engeset, Christine L Parr, Guri Skeie, Paula Jakszyn, María-José Sánchez, José M Huerta, M Luisa Redondo, Aurelio Barricarte, Pilar Amiano, Isabel Drake, Emily Sonestedt, Göran Hallmans, Ingegerd Johansson, Veronika Fedirko, Isabelle Romieux, Pietro Ferrari, Teresa Norat, Anne C Vergnaud, Elio Riboli, Jakob Linseisen (March 7, 2013). "Meat consumption and mortality – results from the E uropean Prospective Investigation into Cancer and Nutrition". BMC Medicine. 11:63. doi:10.1186/1741-7015-11-63. Retrieved March 7, 2013. "The results of our analysis support a moderate positive association between processed meat consumption and mortality, in particular due to cardiovascular diseases, but also to cancer." 
  37. ^ Timothy J Key, Gary E Fraser, Margaret Thorogood, Paul N Appleby, Valerie Beral, Gillian Reeves, Michael L Burr, Jenny Chang-Claude, Rainer Frentzel-Beyme, Jan W Kuzma, Jim Mann and Klim McPherson (September 1999). "Mortality in vegetarians and non-vegetarians: detailed findings from a collaborative analysis of 5 prospective studies". American Journal of Clinical Nutrition 70 (3): 516S–524S. doi:10.1079/phn19980006. PMID 10479225. Retrieved May 20, 2013. 
  38. ^ http://www.ers.usda.gov/publications/foodreview/jan1996/frjan96f.pdf
  39. ^ a b Cross, Amanda; Leitzmann, MF; Gail, MH; Hollenbeck, AR; Schatzkin, A; Sinha, R (2007). "A Prospective Study of Red and Processed Meat Intake in Relation to Cancer Risk". PLoS Medicine (the Public Library of Science) 4 (12): e325. doi:10.1371/journal.pmed.0040325. PMC 2121107. PMID 18076279. 
  40. ^ Nothlings, U.; Wilkens, L. R.; Murphy, S. P.; Hankin, J. H.; Henderson, B. E.; Kolonel, L. N. "Meat and Fat Intake as Risk Factors for Pancreatic Cancer: The Multiethnic Cohort Study – Nöthlings et al. 97 (19): 1458 – JNCI Journal of the National Cancer Institute". JNCI Journal of the National Cancer Institute (Jnci.oxfordjournals.org) 97 (19): 1458. doi:10.1093/jnci/dji292. Retrieved May 1, 2010. 
  41. ^ "Nutrients, Vitamins, Minerals and Dietary Information". Nutristrategy.com. Retrieved May 1, 2010. 
  42. ^ "What You Eat May Influence Colon Cancer Relapse". American Cancer Society. August 21, 2007. Archived from the original on April 19, 2008. Retrieved July 21, 2008. 
  43. ^ Taylor, E F; Burley, V J; Greenwood, D C; Cade, J E. "Meat consumption and risk of breast cancer in the UK Women's Cohort Study". British Journal of Cancer 96 (7): 1139–46. doi:10.1038/sj.bjc.6603689. PMC 2360120. PMID 17406351. Retrieved May 1, 2010. 
  44. ^ Park, S. Y.; Murphy, S. P.; Wilkens, L. R.; Henderson, B. E.; Kolonel, L. N. (2007). "Fat and meat intake and prostate cancer risk: The multiethnic cohort study". International Journal of Cancer 121 (6): 1339–1345. doi:10.1002/ijc.22805. PMID 17487838.  edit
  45. ^ Key, T. J. , G. E. Fraser, M. Thorogood, P. N. Appleby, V. Beral, G. Reeves, M. L. Burr, J. Chang-Claude, R. Frentzel-Beyme, J. W. Kuzma, J. Mann and K. McPherson. 1999. Mortality in vegetarians and nonvegetarians: detailed findings from a collaborative analysis of 5 prospective studies. Am. J. Clin. Nutr. 70 (suppl.): 516S-524S
  46. ^ Truswell, A. S. 2002. Meat consumption and cancer of the large bowel. E. J. Clin. Nutr. 56: S19-S24.
  47. ^ Chao, A., M. J. Thun, C. J. Connell, M. L. McCullough, E. J. Jacobs, W. D. Flanders, C. Rodriguez, R. Sinha and E. E. Calle. 2005. Meat consumption and risk of colorectal cancer. J. Am. Med. Assoc. 293: 172-182
  48. ^ Alexander, D. D., C. A. Cushing, K. A. Lowe, B. Sceurman and M. A. Roberts. 2009. Meta-analysis of animal fat or animal protein intake and colorectal cancer. Am. J. Clin. Nutr. 89: 1402-1409
  49. ^ Key, T. J., P. N. Appleby, E. A. Spencer, R. C. Travis, A. W. Roddam and N. E. Allen. 2009. Cancer incidence in vegetarians: results from the European Prospective Investigation into Cancer and Nutrition (EPIC-Oxford). Am. J. Clin. Nutr. 89 (suppl.): 1620S-1626S
  50. ^ Gonzalez, C. A. et al. 2006. Meat Intake and Risk of Stomach and Esophageal Adenocarcinoma Within the European Prospective Investigation Into Cancer and Nutrition (EPIC). J. National Cancer Inst. 98: 345-354
  51. ^ http://circ.ahajournals.org/cgi/content/abstract/CIRCULATIONAHA.109.924977v1
  52. ^ Snowdon, D. A.; Phillips, R. L.; Fraser, G. E. (1984). "Meat consumption and fatal ischemic heart disease". Preventive medicine 13 (5): 490–500. PMID 6527990.  edit
  53. ^ [1]
  54. ^ US Meat and Poultry Is Widely Contaminated With Drug-Resistant Staph Bacteria
  55. ^ Corpet, Denis; Yin, Y; Zhang, X; Rémésy, C; Stamp, D; Medline, A; Thompson, L; Bruce, W et al. (1995). "Colonic protein fermentation and promotion of colon carcinogenesis by thermolyzed casein". Nutr Cancer (Nutr Cancer.) 23 (3): 271–81. doi:10.1080/01635589509514381. PMC 2518970. PMID 7603887. 
  56. ^ "National Cancer Institute – Heterocyclic Amines in Cooked Meats". Cancer.gov. September 15, 2004. Retrieved May 1, 2010. 
  57. ^ "Heterocyclic Amines in Cooked Meats – National Cancer Institute". Cancer.gov. September 15, 2004. Retrieved May 1, 2010. 
  58. ^ "PAH-Occurrence in Foods, Dietary Exposure and Health Effects" (PDF). Retrieved May 1, 2010. 
  59. ^ Steinfeld, H. et al. 2006, Livestock’s Long Shadow: Environmental Issues and Options. Livestock, Environment and Development, FAO.
  60. ^ Holechek, J. L. et al. 1982. Manipulation of grazing to improve or maintain wildlife habitat. Wildlife Soc. Bull. 10:204-210.
  61. ^ Strassman, B. I. 1987. Effects of cattle grazing and haying on wildlife conservation at National Wildlife Refuges in the United States. Environmental Mgt. 11: 35-44
  62. ^ Launchbaugh, K. (ed.) 2006. Targeted Grazing: a natural approach to vegetation management and landscape enhancement. American Sheep Industry. 199 pp.
  63. ^ Anderson, D. C. 1978. Use of cereal residues in beef cattle production systems. J. Anim. Sci. 46: 849-861.
  64. ^ Elferink, E. V., S. Nonhebel and H. C. Moll. 2008. Feeding livestock food residue and the consequences for the environmental impact of meat. J. Cleaner Prod. 16: 1227-1233.
  65. ^ Shapouri, H. et al. 2002. The energy balance of corn ethanol: an update. USDA Agricultural Economic Report 814.
  66. ^ a b Juliet Eilperin and Tim Carman for the Washington Post. February 21, 2013. One-third of seafood mislabeled, study finds
  67. ^ EU-wide Meat Testing for Horsemeat SGS Food Safety Bulletin, Retrieved April 16, 2013
  68. ^ Horse Meat Scandal Is ‘Food Fraud’ New York Times, Retrieved April 17, 2013

External links[edit]