Mega Ampere Spherical Tokamak

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Coordinates: 51°39′33″N 1°13′50″W / 51.65917°N 1.23056°W / 51.65917; -1.23056

MAST
Plasma in the MAST reactor.
Type Spherical tokamak
Operation date 1999–
Major radius ~2? m
Minor Radius ~1.5? m
Magnetic field 0.55 T
Heating 5 MW
Plasma current 1.3 MA

The Mega Ampere Spherical Tokamak (MAST) experiment is a nuclear fusion experiment in operation at Culham, Oxfordshire, United Kingdom since December 1999. It follows the highly successful Small Tight Aspect Ratio Tokamak (START) experiment (1991 - 1998). MAST uses the same innovative spherical tokamak design as START, which has shown itself to be more efficient than the conventional toroidal design, adopted by Joint European Torus (JET) and ITER. START proved to exceed even the most optimistic predictions and the purpose of MAST is to confirm the results of its forerunner by using a larger more purpose-built experiment.

It was fully commissioned by EURATOM/UKAEA and took two years to design and a further two years to construct. It includes a neutral beam injector similar to that used on START and uses the same merging compression technique instead of the conventional direct induction. Merging compression provides a valuable saving of central solenoid flux, which can then be used to further ramp up the plasma current and/or maintain the required current flat-top.

Its plasma volume is about 8 m3. Density ~ 1020/m3.

Image to right shows Plasma in the MAST reactor. Note the almost circular outer profile of the plasma. The extensions off the top and bottom are plasma flowing to the ring diverters, a key feature of modern tokamak designs.

Upgrades[edit]

The device is planning a major upgrade to significantly enhance its capabilities to address its primary objectives. (listed below). The first stage "1a" should be complete by 2015.[1]

Objectives[edit]

  • Studies in a new regime, to provide improved understanding of tokamaks, and improved ITER design (e.g., effects of plasma shaping).
  • To investigate the potential of the spherical tokamak route to fusion power.

See also[edit]

References[edit]

External links[edit]