Memory-level parallelism

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Memory Level Parallelism or MLP is a term in computer architecture referring to the ability to have pending multiple memory operations, in particular cache misses or translation lookaside buffer misses, at the same time.

In a single processor, MLP may be considered a form of ILP, instruction level parallelism. However, ILP is often mixed up with superscalar, the ability to execute more than one instruction at the same time. E.g. a processor such as the Intel Pentium Pro is five-way superscalar, with the ability to start executing five different microinstructions in a given cycle, but it can handle four different cache misses for up to 20 different load microinstructions at any time.

It is possible to have a machine that is not superscalar but which nevertheless has high MLP.

Arguably a machine that has no ILP, which is not superscalar, which executes one instruction at a time in a non-pipelined manner, but which performs hardware prefetching (not software instruction level prefetching) exhibits MLP (due to multiple prefetches outstanding) but not ILP. This is because there are multiple memory operations outstanding, but not instructions. Instructions are often mixed up with operations.

Furthermore, multiprocessor and multithreaded computer systems may be said to exhibit MLP and ILP due to parallelism - but not intra-thread, single process, ILP and MLP. Often, however, we restrict the terms MLP and ILP to refer to extracting such parallelism from what appears to be non-parallel single threaded code.

References[edit]

  • "Enhancing memory level parallelism via recovery-free value prediction." H. Zhou and T. M. Conte. Proceedings of the 17th Annual International Conference on Supercomputing, ICS 2003.
  • "A Case for MLP-Aware Cache Replacement", Moinuddin K. Qureshi, Daniel N. Lynch, Onur Mutlu, Yale N. Patt. Proceedings of the 33rd annual International Symposium on Computer Architecture (ISCA), 2006.
  • "MLP-Aware Runahead Threads în a Simultaneous Multithreading Processor"(paper). Craeynest, K. Van, S. Eyerman, L. Eeckhout. Proc. of The 4th HiPEAC Int. Conf., Paphos, Cyprus, January 2009.
  • "Microarchitecture optimizations for exploiting memory-level parallelism", Yuan Chou, B. Fahs, and S. Abraham, Computer Architecture, 2004. Proceedings. 31st Annual International Symposium on 2004.
  • "Coming challenges in microarchitecture and architecture", Ronen, R.; Mendelson, A.; Lai, K.; Shih-Lien Lu; Pollack, F.; Shen, J.P. Proceedings of the IEEE Volume: 89 Issue: 3 Mar 2001
  • "MLP yes! ILP no!" (abstract / slides), A. Glew. In Wild and Crazy Ideas Session, 8th International Conference on Architectural Support for Programming Languages and Operating Systems, October 1998.