# Method of Fluxions

French cover of Newton's Method of Fluxions

Method of Fluxions[1] is a book by Isaac Newton. The book was completed in 1671, and published in 1736. Fluxions is Newton's term for differential calculus (fluents was his term for integral calculus). He originally developed the method at Woolsthorpe Manor during the closing of Cambridge during the Great Plague of London from 1665 to 1667, but did not choose to make his findings known (similarly, his findings which eventually became the Philosophiae Naturalis Principia Mathematica were developed at this time and hidden from the world in Newton's notes for many years). Gottfried Leibniz developed his calculus around 1673, and published it in 1684, fifty years before Newton. The calculus notation in use today is mostly that of Leibniz, although Newton's dot notation for differentiation $\dot{x}$ for denoting derivatives with respect to time is still in current use throughout mechanics and circuit analysis.

Newton's Method of Fluxions was formally published posthumously, but following Leibniz's publication of the calculus a bitter rivalry erupted between the two mathematicians over who had developed the calculus first and so Newton no longer hid his knowledge of fluxions.

## Newton's development of analysis

For a period of time encompassing Newton's working life, the discipline of analysis was a subject of controversy in the mathematical community. Although analytic techniques provided solutions to long-standing problems, including problems of quadrature and the finding of tangents, the proofs of these solutions were not known to be reducible to the synthetic rules of Euclidean geometry. Instead, analysts were often forced to invoke infinitesimal, or "infinitely small," quantities to justify their algebraic manipulations. Some of Newton's mathematical contemporaries, such as Isaac Barrow, were highly skeptical of such techniques, which had no clear geometric interpretation. Although in his early work Newton also used infinitesimals in his derivations without justifying them, he later developed something akin to the modern definition of limits in order to justify his work.[2]

## Wider impact

When looking at Newton's works it is often taken for granted the richness and depth of his work as how it interacts with the physical universe. Scholars will often separate his work into the categories of scientific and esoteric while highly discounting the drive behind his works. Newton was constantly in search for divine truth whether it be in science, biblical scripture, or the general course of human history. Newton held that the Bible was not a book of mysteries only to be understood by a divine creator but rather an account of the understanding of a God and that God's omnipotence over mankind through Nature as his demonstration of his infinite wisdom.[3]