Micro-X-ray fluorescence

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Micro x-ray fluorescence (µXRF) is an elemental analysis technique that relies on the same principles as x-ray fluorescence (XRF). The difference is that micro x-ray fluorescence has a spatial resolution with a diameter many orders of magnitude smaller than conventional XRF. While a smaller excitation spot can be achieved by restricting x-ray beam using a pinhole aperture, this method blocks much of the x-ray flux which has an adverse effect on the sensitivity of trace elemental analysis.[1] Two types of x-ray optics, polycapillary and doubly curved crystal focusing optics, are able to create small focal spots of just a few micrometers in diameter. By using x-ray optics, the irradiation of the focal spot is much more intense and allows for enhanced trace element analysis and better resolution of small features. Micro x-ray fluorescence using x-ray optics has been used in applications such as forensics, small feature evaluations, elemental mapping, multi-layered coating analysis, micro-contamination detection, and film and plating thickness.[2]

Application in Forensic Science[edit]

Micro x-ray fluorescence is among the newest technologies used to detect fingerprints. It is a new visualization technique which rapidly reveals the elemental composition of a sample by irradiating it with a thin beam of X-rays without disturbing the sample. It was discovered recently by scientists at the Los Alamos National Laboratory. The newly discovered technique was then first revealed at the 229th national meeting of the American Chemical Society (March, 2005). This new discovery could prove to be very beneficial to the law enforcement world, because it is expected that µXRF will be able to detect the most complex molecules in fingerprints.[3]

Michael Bernstein of the American Chemical Society describes how the process works "Salts such as sodium chloride and potassium chloride excreted in sweat are sometimes present in detectable quantities in fingerprints. Using µXRF, the researchers showed that they could detect the sodium, potassium and chlorine from such salts. And since these salts are deposited along the patterns present in a fingerprint, an image of the fingerprint can be visualized producing an elemental image for analysis." This basically means that we can “see” a fingerprint because the salts are deposited mainly along the patterns present in a fingerprint.[4]

Since µXRF technology uses X-ray technology to detect fingerprints, instead of traditional techniques, the image comes out much clearer. Traditional fingerprints are performed by using a technique called [clarification needed][5] which involves using powders, liquids, or vapors to add color to the fingerprint so it can be easily distinguished. But sometimes this process may alter the fingerprint or may not be able to detect some of the more complex molecules.

References[edit]

  1. ^ S. Bichlmeier, K. Janssens, J. Heckel, D.Gibson, P. Hoffmann and H.M. Ortner, [1], X-Ray Spectrom, 14 August 2001
  2. ^ Micro X-ray Fluorescence (µXRF)
  3. ^ Bernstein, Michael, [2], New fingerprint visualization method uses X-rays to reveal missing clues 13 Mar 2005 accessed(14 Oct 2008)
  4. ^ Worley, Christopher, [3], American Institute of Physics 12 Jan 2006 accessed(14 Oct 2008)
  5. ^ Chianese, Moscato, Penta, Picariello, Contrast Enhancement,Image Analysis and Recognition Volume 4142/200621 09 2006 274-285. accessed (14 Oct 2008)