Minority interpretations of quantum mechanics

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Quantum mechanics is an important field within physics. It is primarily defined by its mathematical formalism. It differs from the ordinary field theories of physics, in that its mathematical formalism refers not to ordinary physical space-time, but rather to an abstract space called configuration space, which does not yield ordinary visualizable pictures of space-time and causal linkage. Moreover, it rests on the postulate of the quantum, that some of the real facts of Nature are discrete or discontinuous. This entails that the 'gaps' in between are unknowable. The result is that ordinary physical intuition sees apparent paradoxes in quantum mechanics. This has led to various "interpretations" within the scientific community, some having more academic following than others. Below is a list of approaches which, independently of their intrinsic value, remain today less known, or are simply less debated by the scientific community, for different reasons.

  • Hidden-measurements interpretation. This is a realistic interpretation of quantum mechanics which explains the measurement process by assuming that there are fluctuations in the way the measuring system interacts with the measured entity. According to this interpretation, the quantum probabilities, and the associated Born rule, find their origin in a condition of lack of knowledge about which specific measurement-interaction takes place (i.e., is actualized) each time a measurement is executed.[26][27]

See also[edit]


  1. ^ Jammer, M. 1974. The Philosophy of Quantum Mechanics: the Interpretations of QM in Historical Perspective, Wiley, ISBN 0-471-43958-4, pp. 453-465.
  2. ^ Watanabe, Satosi. "Symmetry of physical laws. Part III. Prediction and retrodiction." Reviews of Modern Physics 27.2 (1955): 179.
  3. ^ Davidon, W.C. "Quantum Physics of Single Systems." Il Nuovo Cimento, Volume 36B, pp. 34-40 (1976).
  4. ^ Aharonov, Y. and Vaidman, L. "On the Two-State Vector Reformulation of Quantum Mechanics." Physica Scripta, Volume T76, pp. 85-92 (1998).
  5. ^ Wharton, K. B. "Time-Symmetric Quantum Mechanics." Foundations of Physics, 37(1), pp. 159-168 (2007).
  6. ^ Wharton, K. B. "A Novel Interpretation of the Klein-Gordon Equation." Foundations of Physics, 40(3), pp. 313-332 (2010).
  7. ^ Heaney, M. B. "A Symmetrical Interpretation of the Klein-Gordon Equation." Foundations of Physics (2013): http://link.springer.com/article/10.1007%2Fs10701-013-9713-9.
  8. ^ Mohrhoff, U. (2005). "The Pondicherry interpretation of quantum mechanics: An overview". Pramana 64 (2): 171–185. arXiv:quant-ph/0412182. Bibcode:2005Prama..64..171M. doi:10.1007/BF02704872. 
  9. ^ Shaun O’Kane (1997). "London (Ticker Tape) Interpretation". Retrieved April 2012. 
  10. ^ Christophe de Dinechin. "Theory of Incomplete Measurements". Retrieved April 2012. 
  11. ^ Gambini, Rodolfo; Pullin, Jorge (2009). "The Montevideo interpretation of quantum mechanics: frequently asked questions". Journal of Physics: Conference Series 174: 012003. arXiv:0905.4402. Bibcode:2009JPhCS.174a2003G. doi:10.1088/1742-6596/174/1/012003. 
  12. ^ Jorge Pullin. "The Montevideo Interpretation of Quantum Mechanics". Retrieved April 2012. 
  13. ^ Duane, G.S., 2001: Violation of Bell’s inequality in synchronized hyperchaos, Found. Phys. Lett., 14, 341-353.
  14. ^ Duane, G.S., 2005: Quantum nonlocality from synchronized chaos, Int. J. Theor. Phys., 44, 1917-1932.
  15. ^ Khrennikov, Andrei (2012). "Vaxjo Interpretation of Wave Function:2012". AIP Conf. Proc. 1508: 242–252. arXiv:1210.2390. doi:10.1063/1.4773136. 
  16. ^ Nikkhah Shirazi, Armin (2012). "A Novel Approach to 'Making Sense' out of the Copenhagen Interpretation". AIP Conf. Proc. 1508: 422–427. doi:10.1063/1.4773159. 
  17. ^ Mamas, D.L., An intrinsic quantum state interpretation of quantum mechanics, Physics Essays 26: 181–182 (2013)
  18. ^ ’’Born in an Infinite Universe: a Cosmological Interpretation of Quantum Mechanics”, A. Aguirre and M. Tegmark (2010) arXiv:1008.1066
  19. ^ Marie-Christine Combourieu: Karl R. Popper, 1992: About the EPR controversy. Foundations of Physics 22:10, 1303-1323
  20. ^ Dolce, D "Compact Time and Determinism for Bosons: foundations", Foundations of Physics, 41, pp. 178-203 (2011) Donatello Dolce (2010). "Compact Time and Determinism for Bosons: Foundations". Foundations of Physics 41 (2): 178–203. arXiv:0903.3680. Bibcode:2010FoPh..tmp...86D. doi:10.1007/s10701-010-9485-4. 
  21. ^ Dolce, D,; "Elementary spacetime cycles", Eur. Phys. Lett. 102, 31002 (2013), arXiv:1305.2802v1
  22. ^ Dolce, D "On the intrinsically cyclic nature of space-time in elementary particles", J. Phys.: Conf. Ser. 343 (2012) 012031 Donatello Dolce (2012). "On the intrinsically cyclic nature of space-time in elementary particles". J.Phys.Conf.Ser. 343: 012031. arXiv:1206.1140. Bibcode:2012JPhCS.343a2031D. doi:10.1088/1742-6596/343/1/012031. 
  23. ^ 't Hooft, G "The mathematical basis for deterministic quantum mechanics", DOI:10.1088/1742-6596/67/1/012015, arxiv=quant-ph/0604008
  24. ^ Dolce, D "Gauge Interaction as Periodicity Modulation", Annals of Physics, Volume 327, Issue 6, June 2012, pp. 1562–1592 Donatello Dolce (2012). "Gauge Interaction as Periodicity Modulation". Annals of Physics 327 (6): 1562–1592. arXiv:1110.0315. Bibcode:2012AnPhy.327.1562D. doi:10.1016/j.aop.2012.02.007. 
  25. ^ Dolce, D "Classical geometry to quantum behavior correspondence in a Virtual Extra Dimension", Annals #of Physics, Volume 327, Issue 9, September 2012, pp 2354–2387 Donatello Dolce (2012). "Classical geometry to quantum behavior correspondence in a Virtual Extra Dimension". Annals of Physics 327 (9): 2354. arXiv:1110.0316. Bibcode:2012AnPhy.327.2354D. doi:10.1016/j.aop.2012.06.001. 
  26. ^ Aerts, D. (1986). A possible explanation for the probabilities of quantum mechanics, Journal of Mathematical Physics, 27, pp. 202-210.
  27. ^ Aerts, D. and Sassoli de Bianchi, M. (2014). The extended Poincare-Bloch representation of quantum mechanics and the hidden-measurement solution to the measurement problem. arXiv:1404.2429.