Missile lock-on

From Wikipedia, the free encyclopedia
Jump to: navigation, search
For other uses, see Lock On (disambiguation).
Search radar (large black dish) and illuminator radar (small grey dish) onboard a German frigate

Lock-on is a feature of many radar systems that allows it to automatically follow a selected target. Lock-on was first designed for the AI Mk. IX radar in the UK, but first used extensively by US ground-based SCR-584 radar. The SCR-584 demonstrated the ability to easy track almost any airborne target, from aircraft to artillery shells.

In the post-WWII era, the term became more widely used in connection to missile guidance concepts. Many modern anti-aircraft missiles use some form of semi-active radar homing, where the missile seeker listens for reflections of the launch platform's main radar. To provide a continual signal, the radar is locked-onto the target, following it throughout the missile's flight.

In older radar systems, through the 1980s, lock-on was normally assisted by a change in the radar signal characteristics, often by increasing the pulse repetition frequency. This led to the introduction of radar warning receivers that would notice this change and provide an audible warning to the operator, typically the pilot. Missile lock-on is typically indicated to the pilot or missile operator via an audible tone, a head-up display or a helmet-mounted display.[1]

Types[edit]

Semi-active radar homing[edit]

With a semi-active radar homing system, the launch platform acquires the target with its search radar. The missile is then powered up while the launch platform's illuminator radar "lights up" the target for it. The illuminator is a radar transmitter with a narrow, focused beam that may be separate from the search radar and that can be directed at a target using information from the search radar. When the passive radar of the missile's guidance system is able to "see"/detect the radio waves reflected from the target, missile lock-on is achieved and the weapon is ready to be launched.[2]

Infrared homing[edit]

In this scenario, the target itself provides the (infrared) emissions that the missile's Infrared homing sensor is able to detect; lock-on occurs when the missile is powered up and able to "see" the infrared signature of the target.

Detection by the target[edit]

The subject of a radar lock-on may become aware of the fact that it is being actively targeted by virtue of the electro-magnetic emissions of the tracking system, notably the illuminator. This condition will present a heightened threat to the target, as it indicates that a missile may be about to be fired at it.

See also[edit]

Notes[edit]

  1. ^ R. P. G. Collinson (2003). Introduction to Avionics Systems. Springer. ISBN 1-4020-7278-3. 
  2. ^ Carlo Kopp (June 1982). "Active and Semi-Active Radar Missile Guidance". Australian Aviation.