# Mixed volume

In mathematics, more specifically, in convex geometry, the mixed volume is a way to associate a non-negative number to an n-tuple of convex bodies in the n-dimensional space. This number depends on the size of the bodies and their relative positions.[1]

## Definition

Let K1K2, ..., Kr be convex bodies in Rn, and consider the function

$f(\lambda_1, \ldots, \lambda_r) = \mathrm{Vol}_n (\lambda_1 K_1 + \cdots + \lambda_r K_r), \qquad \lambda_i \geq 0,$

where Voln stands for the n-dimensional volume and its argument is the Minkowski sum of the scaled convex bodies Ki. One can show that f is a homogeneous polynomial of degree n, therefore it can be written as

$f(\lambda_1, \ldots, \lambda_r) = \sum_{j_1, \ldots, j_n = 1}^r V(K_{j_1}, \ldots, K_{j_n}) \lambda_{j_1} \cdots \lambda_{j_n},$

where the functions V are symmetric. Then V(T1, ..., Tn) is called the mixed volume of T1T2, ..., Tn.

Equivalently,

$V(T_1, \ldots, T_n) = \left. \frac{\partial^n}{\partial \lambda_1 \cdots \partial \lambda_n}\right|_{\lambda_1 = \cdots = \lambda_n = +0} \mathrm{Vol}_n(\lambda_1 T_1 + \cdots + \lambda_n T_n).$

## Properties

• The mixed volume is uniquely determined by the following three properties:
1. V(T, ...., T) = Voln(T);
2. V is symmetric in its arguments;
3. V is multilinear: V(a T + b ST2, ..., Tn) =a V(TT2, ..., Tn) + b V(ST2, ..., Tn) for a,b ≥ 0.
• The mixed volume is non-negative, and increasing in each variable.
$V(T_1, T_2, T_3, \ldots, T_n) \geq \sqrt{V(T_1, T_1, T_3, \ldots, T_n) V(T_2,T_2, T_3,\ldots,T_n)}.$
Numerous geometric inequalities, such as the Brunn–Minkowski inequality for convex bodies and Minkowski's first inequality, are special cases of the Alexandrov–Fenchel inequality.

## Quermassintegrals

Let K ⊂ Rn be a convex body, and let B ⊂ Rn be the Euclidean ball. The mixed volume

$W_j(K) = V(\overset{n-j \text{ times}}{\overbrace{K,K, \ldots,K}}, \overset{j \text{ times}}{\overbrace{B,B,\ldots,B}})$

is called the j-th quermassintegral of K.[2]

The definition of mixed volume yields the Steiner formula (named after Jakob Steiner):

$\mathrm{Vol}_n(K + tB) = \sum_{j=0}^n \binom{n}{j} W_j(K) t^j.$

### Intrinsic volumes

The j-th intrinsic volume of K is defined by

$V_j(K) = \binom{n}{j} \frac{W_{n-j}(K)}{\kappa_{n-j}},$

where κnj is the volume of the (n − j)-dimensional ball.