Molecular pathological epidemiology

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Molecular pathological epidemiology (abbreviated as MPE, also called "molecular pathologic epidemiology") is a specific discipline of epidemiology, and also that of pathology. It is defined as "epidemiology of molecular pathology and heterogeneity of disease". MPE represents an integrative interdisciplinary (transdisciplinary or multidisciplinary) science of molecular pathology and epidemiology. Pathology and epidemiology share the same goal of elucidating etiology of disease, and integrative MPE approach aims to achieve this goal simultaneously at molecular, individual, and population levels. Researchers who conduct MPE research are referred to as molecular pathological epidemiologist (or molecular pathologic epidemiologist). Typically, MPE refers to research which utilizes tissue pathology resource and data within existing epidemiology studies. MPE started as analysis of disease patients with data of risk factors (such as smoking) and molecular pathologic findings (such as KRAS oncogene mutation in lung cancer). As advancement of technology and molecular pathology has become rapid, application of molecular pathology to epidemiology is increasingly widespread.

Accumulating evidence including data from The Cancer Genome Atlas projects indicates that disease evolution represents inherently heterogeneous process. Essentially, each individual has a unique disease process different from any other individual (“the unique disease principle”), considering uniqueness of the exposome and its unique influence on molecular pathologic process in each individual.[1] In clinical medicine, this concept has been adopted along with the terms of precision medicine and personalized medicine. Studies to examine the relationship between an exposure and molecular pathologic signature of disease (particularly, cancer) became increasingly common throughout the 1990s and early 2000s.[2] However, the use of molecular pathology in epidemiology posed unique challenges including lack of standardized methodologies and guidelines as well as paucity of interdisciplinary experts and training programs.[3] MPE research necessitates new conceptual framework and methodologies (epidemiological method) because MPE examines heterogeneity in an outcome variable.

In this context, the field of MPE gradually formed. The term "molecular pathological epidemiology" was used by Shuji Ogino and Meir Stampfer in 2010.[4] Specific principles of MPE have developed since 2010. The MPE paradigm has been globally adopted and in widespread use,[5][6][7][8][9][10][11][12][13][14][15][16] and has been a subject in international conferences.[17] Molecular epidemiology broadly encompasses MPE and conventional-type molecular epidemiology with the use of traditional disease designation system.

In MPE, investigators dissect interrelationships between exposures (e.g., environmental, dietary, lifestyle and genetic factors); alterations in cellular or extracellular molecules (disease molecular signatures); and evolution and progression of disease. As disease molecular signatures, investigators can analyze genome, methylome, epigenome, metabolome, transcriptome, proteome, microbiome, immunity, and interactome. In particular, a putative risk factor can be linked to specific molecular signatures of a disease to support a causal association. Thus, MPE can advance the area of causal inference. The MPE research enables identification of a new biomarker for potential clinical utility, using a large-scale population based data (e.g., PIK3CA mutation in colorectal cancer to select patients for aspirin therapy).[18] The MPE approach can be used as one of next steps from genome-wide association study (GWAS), which is termed “GWAS-MPE approach”.[19] Detailed disease endpoint phenotyping can be conducted by means of molecular pathology or surrogate histopathology or immunohistochemistry analysis of diseased tissues and cells within GWAS.[20][21] As an alternative approach, potential risk variants identified by GWAS can be examined in combination with molecular pathology analysis on diseased tissues.[22][23][24][25] This GWAS-MPE approach can give not only more precise effect estimates, even larger effects, for specific molecular subtypes of the disease, but also insights into pathogenesis by linking genetic variants to molecular pathologic signatures of disease. Since molecular diagnostics is becoming routine clinical practice in the era of precision medicine, routine molecular pathology data can be utilized in a wide spectrum of epidemiologic research.

The International Molecular Pathological Epidemiology (MPE) Meeting Series exists. Its second meeting is scheduled to be held 4 and 5 December 2014 in Boston.

See also[edit]

References[edit]

  1. ^ Ogino S, Lochhead P, Chan AT, Nishihara R, Cho E, Wolpin BM, Meyerhardt JA, Meissner A, Schernhammer ES, Fuchs CS, Giovannucci E (April 2013). "Molecular pathological epidemiology of epigenetics: emerging integrative science to analyze environment, host, and disease". Modern Pathology 26 (4): 465–84. doi:10.1038/modpathol.2012.214. PMC 3637979. PMID 23307060. 
  2. ^ Slattery ML (October 2002). "The science and art of molecular epidemiology". Journal of Epidemiology and Community Health (Comment) 56 (10): 728–9. PMC 1732025. PMID 12239192. 
  3. ^ Sherman ME, Howatt W, Blows FM, Pharoah P, Hewitt SM, Garcia-Closas M (April 2010). "Molecular pathology in epidemiologic studies: a primer on key considerations". Cancer Epidemiology, Biomarkers & Prevention 19 (4): 966–72. doi:10.1158/1055-9965.EPI-10-0056. PMC 2852464. PMID 20332257. 
  4. ^ Ogino S, Stampfer M (March 2010). "Lifestyle factors and microsatellite instability in colorectal cancer: the evolving field of molecular pathological epidemiology". Journal of the National Cancer Institute (Comment) 102 (6): 365–7. doi:10.1093/jnci/djq031. PMC 2841039. PMID 20208016. 
  5. ^ Curtin K, Slattery ML, Samowitz WS (2011). "CpG island methylation in colorectal cancer: past, present and future". Pathology Research International 2011: 902674. doi:10.4061/2011/902674. PMC 3090226. PMID 21559209. 
  6. ^ Galon J, Pagès F, Marincola FM, Angell HK, Thurin M, Lugli A, Zlobec I, Berger A, Bifulco C, Botti G, Tatangelo F, Britten CM, Kreiter S, Chouchane L, Delrio P, Arndt H, Asslaber M, Maio M, Masucci GV, Mihm M, Vidal-Vanaclocha F, Allison JP, Gnjatic S, Hakansson L, Huber C, Singh-Jasuja H, Ottensmeier C, Zwierzina H, Laghi L, Grizzi F, Ohashi PS, Shaw PA, Clarke BA, Wouters BG, Kawakami Y, Hazama S, Okuno K, Wang E, O'Donnell-Tormey J, Lagorce C, Pawelec G, Nishimura MI, Hawkins R, Lapointe R, Lundqvist A, Khleif SN, Ogino S, Gibbs P, Waring P, Sato N, Torigoe T, Itoh K, Patel PS, Shukla SN, Palmqvist R, Nagtegaal ID, Wang Y, D'Arrigo C, Kopetz S, Sinicrope FA, Trinchieri G, Gajewski TF, Ascierto PA, Fox BA (2012). "Cancer classification using the Immunoscore: a worldwide task force". Journal of Translational Medicine 10: 205. doi:10.1186/1479-5876-10-205. PMC 3554496. PMID 23034130. 
  7. ^ Ku CS, Cooper DN, Wu M, Roukos DH, Pawitan Y, Soong R, Iacopetta B (August 2012). "Gene discovery in familial cancer syndromes by exome sequencing: prospects for the elucidation of familial colorectal cancer type X". Modern Pathology : an Official Journal of the United States and Canadian Academy of Pathology, Inc 25 (8): 1055–68. doi:10.1038/modpathol.2012.62. PMID 22522846. 
  8. ^ Koshiol J, Lin SW (July 2012). "Can tissue-based immune markers be used for studying the natural history of cancer?". Annals of Epidemiology 22 (7): 520–30. doi:10.1016/j.annepidem.2012.03.001. PMC 3596808. PMID 22481034. 
  9. ^ Fini L, Grizzi F, Laghi L (2012). Ettarh R, ed. Adaptive and Innate Immunity, Non Clonal Players in Colorectal Cancer Progression. InTech. pp. 323–40. ISBN 9789535100621. 
  10. ^ Dogan S, Shen R, Ang DC, Johnson ML, D'Angelo SP, Paik PK, Brzostowski EB, Riely GJ, Kris MG, Zakowski MF, Ladanyi M (November 2012). "Molecular epidemiology of EGFR and KRAS mutations in 3,026 lung adenocarcinomas: higher susceptibility of women to smoking-related KRAS-mutant cancers". Clinical Cancer Research 18 (22): 6169–77. doi:10.1158/1078-0432.CCR-11-3265. PMC 3500422. PMID 23014527. 
  11. ^ Spitz MR, Caporaso NE, Sellers TA (December 2012). "Integrative cancer epidemiology--the next generation". Cancer Discovery 2 (12): 1087–90. doi:10.1158/2159-8290.CD-12-0424. PMC 3531829. PMID 23230187. 
  12. ^ Shanmuganathan R, Basheer NB, Amirthalingam L, Muthukumar H, Kaliaperumal R, Shanmugam K (January 2013). "Conventional and nanotechniques for DNA methylation profiling". The Journal of Molecular Diagnostics : JMD 15 (1): 17–26. doi:10.1016/j.jmoldx.2012.06.007. PMID 23127612. 
  13. ^ Hughes LA, Melotte V, de Schrijver J, de Maat M, Smit VT, Bovée JV, French PJ, van den Brandt PA, Schouten LJ, de Meyer T, van Criekinge W, Ahuja N, Herman JG, Weijenberg MP, van Engeland M (October 2013). "The CpG island methylator phenotype: what's in a name?". Cancer Research 73 (19): 5858–68. doi:10.1158/0008-5472.CAN-12-4306. PMID 23801749. 
  14. ^ Esterhuyse MM, Kaufmann SH. (Nov 2013). "Diagnostic biomarkers are hidden in the infected host's epigenome.". Expert Rev Mol Diagn 13 (8): 625–637. PMID 23895131. 
  15. ^ Hagland HR, Søreide K (March 2014). "Cellular metabolism in colorectal carcinogenesis: Influence of lifestyle, gut microbiome and metabolic pathways". Cancer Letters. doi:10.1016/j.canlet.2014.02.026. PMID 24614287. 
  16. ^ Bishehsari F, Mahdavinia M, Vacca M, Malekzadeh R, Mariani-Costantini R (May 2014). "Epidemiological transition of colorectal cancer in developing countries: environmental factors, molecular pathways, and opportunities for prevention". World Journal of Gastroenterology : WJG 20 (20): 6055–72. doi:10.3748/wjg.v20.i20.6055. PMC 4033445. PMID 24876728. 
  17. ^ Kuller LH, Bracken MB, Ogino S, Prentice RL, Tracy RP (November 2013). "The role of epidemiology in the era of molecular epidemiology and genomics: Summary of the 2013 AJE-sponsored Society of Epidemiologic Research Symposium". American Journal of Epidemiology 178 (9): 1350–4. doi:10.1093/aje/kwt239. PMID 24105654. 
  18. ^ Ogino S, Lochhead P, Giovannucci E, Meyerhardt JA, Fuchs CS, Chan AT (June 2014). "Discovery of colorectal cancer PIK3CA mutation as potential predictive biomarker: power and promise of molecular pathological epidemiology". Oncogene 33 (23): 2949–55. doi:10.1038/onc.2013.244. PMID 23792451. 
  19. ^ Ogino S, Chan AT, Fuchs CS, Giovannucci E (March 2011). "Molecular pathological epidemiology of colorectal neoplasia: an emerging transdisciplinary and interdisciplinary field". Gut 60 (3): 397–411. doi:10.1136/gut.2010.217182. PMC 3040598. PMID 21036793. 
  20. ^ Shen H, Fridley BL, Song H, Lawrenson K, Cunningham JM, Ramus SJ, Cicek MS, Tyrer J, Stram D, Larson MC, Köbel M, Ziogas A, Zheng W, Yang HP, Wu AH, Wozniak EL, Woo YL, Winterhoff B, Wik E, Whittemore AS, Wentzensen N, Weber RP, Vitonis AF, Vincent D, Vierkant RA, Vergote I, Van Den Berg D, Van Altena AM, Tworoger SS, Thompson PJ, Tessier DC, Terry KL, Teo SH, Templeman C, Stram DO, Southey MC, Sieh W, Siddiqui N, Shvetsov YB, Shu XO, Shridhar V, Wang-Gohrke S, Severi G, Schwaab I, Salvesen HB, Rzepecka IK, Runnebaum IB, Rossing MA, Rodriguez-Rodriguez L, Risch HA, Renner SP, Poole EM, Pike MC, Phelan CM, Pelttari LM, Pejovic T, Paul J, Orlow I, Omar SZ, Olson SH, Odunsi K, Nickels S, Nevanlinna H, Ness RB, Narod SA, Nakanishi T, Moysich KB, Monteiro AN, Moes-Sosnowska J, Modugno F, Menon U, McLaughlin JR, McGuire V, Matsuo K, Adenan NA, Massuger LF, Lurie G, Lundvall L, Lubiński J, Lissowska J, Levine DA, Leminen A, Lee AW, Le ND, Lambrechts S, Lambrechts D, Kupryjanczyk J, Krakstad C, Konecny GE, Kjaer SK, Kiemeney LA, Kelemen LE, Keeney GL, Karlan BY, Karevan R, Kalli KR, Kajiyama H, Ji BT, Jensen A, Jakubowska A, Iversen E, Hosono S, Høgdall CK, Høgdall E, Hoatlin M, Hillemanns P, Heitz F, Hein R, Harter P, Halle MK, Hall P, Gronwald J, Gore M, Goodman MT, Giles GG, Gentry-Maharaj A, Garcia-Closas M, Flanagan JM, Fasching PA, Ekici AB, Edwards R, Eccles D, Easton DF, Dürst M, du Bois A, Dörk T, Doherty JA, Despierre E, Dansonka-Mieszkowska A, Cybulski C, Cramer DW, Cook LS, Chen X, Charbonneau B, Chang-Claude J, Campbell I, Butzow R, Bunker CH, Brueggmann D, Brown R, Brooks-Wilson A, Brinton LA, Bogdanova N, Block MS, Benjamin E, Beesley J, Beckmann MW, Bandera EV, Baglietto L, Bacot F, Armasu SM, Antonenkova N, Anton-Culver H, Aben KK, Liang D, Wu X, Lu K, Hildebrandt MA, Schildkraut JM, Sellers TA, Huntsman D, Berchuck A, Chenevix-Trench G, Gayther SA, Pharoah PD, Laird PW, Goode EL, Pearce CL (2013). "Epigenetic analysis leads to identification of HNF1B as a subtype-specific susceptibility gene for ovarian cancer". Nature Communications 4: 1628. doi:10.1038/ncomms2629. PMC 3848248. PMID 23535649. 
  21. ^ Garcia-Closas M, Couch FJ, Lindstrom S, Michailidou K, Schmidt MK, Brook MN, Orr N, Rhie SK, Riboli E, Feigelson HS, Le Marchand L, Buring JE, Eccles D, Miron P, Fasching PA, Brauch H, Chang-Claude J, Carpenter J, Godwin AK, Nevanlinna H, Giles GG, Cox A, Hopper JL, Bolla MK, Wang Q, Dennis J, Dicks E, Howat WJ, Schoof N, Bojesen SE, Lambrechts D, Broeks A, Andrulis IL, Guénel P, Burwinkel B, Sawyer EJ, Hollestelle A, Fletcher O, Winqvist R, Brenner H, Mannermaa A, Hamann U, Meindl A, Lindblom A, Zheng W, Devillee P, Goldberg MS, Lubinski J, Kristensen V, Swerdlow A, Anton-Culver H, Dörk T, Muir K, Matsuo K, Wu AH, Radice P, Teo SH, Shu XO, Blot W, Kang D, Hartman M, Sangrajrang S, Shen CY, Southey MC, Park DJ, Hammet F, Stone J, Veer LJ, Rutgers EJ, Lophatananon A, Stewart-Brown S, Siriwanarangsan P, Peto J, Schrauder MG, Ekici AB, Beckmann MW, Dos Santos Silva I, Johnson N, Warren H, Tomlinson I, Kerin MJ, Miller N, Marme F, Schneeweiss A, Sohn C, Truong T, Laurent-Puig P, Kerbrat P, Nordestgaard BG, Nielsen SF, Flyger H, Milne RL, Perez JI, Menéndez P, Müller H, Arndt V, Stegmaier C, Lichtner P, Lochmann M, Justenhoven C, Ko YD, Muranen TA, Aittomäki K, Blomqvist C, Greco D, Heikkinen T, Ito H, Iwata H, Yatabe Y, Antonenkova NN, Margolin S, Kataja V, Kosma VM, Hartikainen JM, Balleine R, Tseng CC, Berg DV, Stram DO, Neven P, Dieudonné AS, Leunen K, Rudolph A, Nickels S, Flesch-Janys D, Peterlongo P, Peissel B, Bernard L, Olson JE, Wang X, Stevens K, Severi G, Baglietto L, McLean C, Coetzee GA, Feng Y, Henderson BE, Schumacher F, Bogdanova NV, Labrèche F, Dumont M, Yip CH, Taib NA, Cheng CY, Shrubsole M, Long J, Pylkäs K, Jukkola-Vuorinen A, Kauppila S, Knight JA, Glendon G, Mulligan AM, Tollenaar RA, Seynaeve CM, Kriege M, Hooning MJ, van den Ouweland AM, van Deurzen CH, Lu W, Gao YT, Cai H, Balasubramanian SP, Cross SS, Reed MW, Signorello L, Cai Q, Shah M, Miao H, Chan CW, Chia KS, Jakubowska A, Jaworska K, Durda K, Hsiung CN, Wu PE, Yu JC, Ashworth A, Jones M, Tessier DC, González-Neira A, Pita G, Alonso MR, Vincent D, Bacot F, Ambrosone CB, Bandera EV, John EM, Chen GK, Hu JJ, Rodriguez-Gil JL, Bernstein L, Press MF, Ziegler RG, Millikan RM, Deming-Halverson SL, Nyante S, Ingles SA, Waisfisz Q, Tsimiklis H, Makalic E, Schmidt D, Bui M, Gibson L, Müller-Myhsok B, Schmutzler RK, Hein R, Dahmen N, Beckmann L, Aaltonen K, Czene K, Irwanto A, Liu J, Turnbull C, Rahman N, Meijers-Heijboer H, Uitterlinden AG, Rivadeneira F, Olswold C, Slager S, Pilarski R, Ademuyiwa F, Konstantopoulou I, Martin NG, Montgomery GW, Slamon DJ, Rauh C, Lux MP, Jud SM, Bruning T, Weaver J, Sharma P, Pathak H, Tapper W, Gerty S, Durcan L, Trichopoulos D, Tumino R, Peeters PH, Kaaks R, Campa D, Canzian F, Weiderpass E, Johansson M, Khaw KT, Travis R, Clavel-Chapelon F, Kolonel LN, Chen C, Beck A, Hankinson SE, Berg CD, Hoover RN, Lissowska J, Figueroa JD, Chasman DI, Gaudet MM, Diver WR, Willett WC, Hunter DJ, Simard J, Benitez J, Dunning AM, Sherman ME, Chenevix-Trench G, Chanock SJ, Hall P, Pharoah PD, Vachon C, Easton DF, Haiman CA, Kraft P (April 2013). "Genome-wide association studies identify four ER negative-specific breast cancer risk loci". Nature Genetics 45 (4): 392–8, 398e1–2. doi:10.1038/ng.2561. PMC 3771695. PMID 23535733. 
  22. ^ Gruber SB, Moreno V, Rozek LS, Rennerts HS, Lejbkowicz F, Bonner JD, Greenson JK, Giordano TJ, Fearson ER, Rennert G (July 2007). "Genetic variation in 8q24 associated with risk of colorectal cancer". Cancer Biology & Therapy 6 (7): 1143–7. PMID 17630503. 
  23. ^ Slattery ML, Herrick J, Curtin K, Samowitz W, Wolff RK, Caan BJ, Duggan D, Potter JD, Peters U (February 2010). "Increased risk of colon cancer associated with a genetic polymorphism of SMAD7". Cancer Research 70 (4): 1479–85. doi:10.1158/0008-5472.CAN-08-1792. PMC 2925533. PMID 20124488. 
  24. ^ Garcia-Albeniz X, Nan H, Valeri L, Morikawa T, Kuchiba A, Phipps AI, Hutter CM, Peters U, Newcomb PA, Fuchs CS, Giovannucci EL, Ogino S, Chan AT (February 2013). "Phenotypic and tumor molecular characterization of colorectal cancer in relation to a susceptibility SMAD7 variant associated with survival". Carcinogenesis 34 (2): 292–8. doi:10.1093/carcin/bgs335. PMC 3564438. PMID 23104301. 
  25. ^ Nan H, Morikawa T, Suuriniemi M, Imamura Y, Werner L, Kuchiba A, Yamauchi M, Hunter DJ, Kraft P, Giovannucci EL, Fuchs CS, Ogino S, Freedman ML, Chan AT (December 2013). "Aspirin use, 8q24 single nucleotide polymorphism rs6983267, and colorectal cancer according to CTNNB1 alterations". Journal of the National Cancer Institute 105 (24): 1852–61. doi:10.1093/jnci/djt331. PMID 24317174.