NAPA (gene)

From Wikipedia, the free encyclopedia
Jump to: navigation, search
N-ethylmaleimide-sensitive factor attachment protein, alpha
Symbols NAPA ; SNAPA
External IDs OMIM603215 MGI104563 HomoloGene2839 GeneCards: NAPA Gene
RNA expression pattern
PBB GE NAPA 206491 s at tn.png
PBB GE NAPA 208751 at tn.png
More reference expression data
Species Human Mouse
Entrez 8775 108124
Ensembl ENSG00000105402 ENSMUSG00000006024
UniProt P54920 Q9DB05
RefSeq (mRNA) NM_003827 NM_025898
RefSeq (protein) NP_003818 NP_080174
Location (UCSC) Chr 19:
47.99 – 48.02 Mb
Chr 7:
16.1 – 16.12 Mb
PubMed search [1] [2]

N-ethylmaleimide-sensitive factor attachment protein, alpha, also known as SNAP-alpha[1] is a protein that in humans is encoded by the NAPA gene.[2]


The 'SNARE hypothesis' is a model explaining the process of docking and fusion of vesicles to their target membranes. According to this model, membrane proteins from the vesicle (v-SNAREs) and proteins from the target membrane (t-SNAREs) govern the specificity of vesicle targeting and docking through mutual recognition. Once the 2 classes of SNAREs bind to each other, they form a complex that recruits the general elements of the fusion apparatus, namely NSF (N-ethylmaleimide-sensitive factor) and SNAPs (soluble NSF-attachment proteins), to the site of membrane fusion, thereby forming the 20S fusion complex. Alpha- and gamma-SNAP are found in a wide range of tissues and act synergistically in intra-Golgi transport. The sequence of the predicted 295-amino acid human protein encoded by NAPA shares 37%, 60%, and 67% identity with the sequences of yeast, Drosophila, and squid alpha-SNAP, respectively. Platelets contain some of the same proteins, including NSF, p115/TAP, alpha-SNAP (this protein), gamma-SNAP, and the t-SNAREs syntaxin-2 and syntaxin-4, that are used in many vesicular transport processes in other cell types. Platelet exocytosis uses a molecular mechanism similar to that used by other secretory cells, such as neurons, although the proteins used by the platelet and their modes of regulation may be quite different.[2]

Clinical significance[edit]

NAPA is abnormally expressed in fetuses of both IVF and ICSI, which may contribute to the increase risk of birth defects in these ART.[3]


NAPA has been shown to interact with:


  1. ^ NAPA N-ethylmaleimide-sensitive factor attachment protein, alpha
  2. ^ a b "Entrez Gene: NAPA N-ethylmaleimide-sensitive factor attachment protein, alpha". 
  3. ^ Zhang Y, Zhang YL, Feng C, Wu YT, Liu AX, Sheng JZ, Cai J, Huang HF (September 2008). "Comparative proteomic analysis of human placenta derived from assisted reproductive technology". Proteomics 8 (20): 4344–56. doi:10.1002/pmic.200800294. PMID 18792929. 
  4. ^ a b Hanson PI, Otto H, Barton N, Jahn R (Jul 1995). "The N-ethylmaleimide-sensitive fusion protein and alpha-SNAP induce a conformational change in syntaxin". J. Biol. Chem. 270 (28): 16955–61. PMID 7622514. 
  5. ^ Barnard RJ, Morgan A, Burgoyne RD (Nov 1997). "Stimulation of NSF ATPase activity by alpha-SNAP is required for SNARE complex disassembly and exocytosis". J. Cell Biol. 139 (4): 875–83. PMC 2139964. PMID 9362506. 
  6. ^ a b c Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (Oct 2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature 437 (7062): 1173–8. doi:10.1038/nature04209. PMID 16189514. 
  7. ^ McMahon HT, Missler M, Li C, Südhof TC (Oct 1995). "Complexins: cytosolic proteins that regulate SNAP receptor function". Cell 83 (1): 111–9. PMID 7553862. 
  8. ^ Rabouille C, Kondo H, Newman R, Hui N, Freemont P, Warren G (Mar 1998). "Syntaxin 5 is a common component of the NSF- and p97-mediated reassembly pathways of Golgi cisternae from mitotic Golgi fragments in vitro". Cell 92 (5): 603–10. PMID 9506515. 

Further reading[edit]