Neutron source

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Neutron source is a general term referring to a variety of devices that emit neutrons, irrespective of the mechanism used to produce the neutrons. Depending upon variables including the energy of the neutrons emitted by the source, the rate of neutrons emitted by the source, the size of the source, the cost of owning and maintaining the source, and government regulations related to the source, these devices find use in a diverse array of applications in areas of physics, engineering, medicine, nuclear weapons, petroleum exploration, biology, chemistry, nuclear power and other industries.

There are several kinds of neutron sources:

Small Sized Devices[edit]

Radioisotopes Which Undergo Spontaneous Fission
Certain isotopes undergo spontaneous fission with emission of neutrons. The most commonly used spontaneous fission source is the radioactive isotope californium-252. Cf-252 and all other spontaneous fission neutron sources are produced by irradiating uranium or another transuranic element in a nuclear reactor, where neutrons are absorbed in the starting material and its subsequent reaction products, transmuting the starting material into the SF isotope. Cf-252 neutron sources are typically 1/4" to 1/2" in diameter and 1" to 2" in length. When purchased new a typical Cf-252 neutron source emits between 1×107 to 1×109 neutrons per second but, with a half life of 2.6 years, this neutron output rate drops to half of this original value in 2.6 years. The price of a typical Cf-252 neutron source is from $15,000 to $20,000.
Radioisotopes Which Decay With Alpha Particles Packed In A Low-Z Elemental Matrix
Neutrons are produced when alpha particles impinge upon any of several low atomic weight isotopes including isotopes of beryllium, carbon and oxygen. This nuclear reaction can be used to construct a neutron source by intermixing a radioisotope that emits alpha particles such as radium or polonium with a low atomic weight isotope, usually in the form of a mixture of powders of the two materials. Typical emission rates for alpha reaction neutron sources range from 1×106 to 1×108 neutrons per second. As an example, a representative alpha-beryllium neutron source can be expected to produce approximately 30 neutrons for every one million alpha particles. The useful lifetime for these types of sources is highly variable, depending upon the half life of the radioisotope that emits the alpha particles. The size and cost of these neutron sources are also comparable to spontaneous fission sources. Usual combinations of materials are plutonium-beryllium (PuBe), americium-beryllium (AmBe), or americium-lithium (AmLi).
Radioisotopes Which Decay With High Energy Photons Co-located With Beryllium or Deuterium
Gamma radiation with an energy exceeding the neutron binding energy of a nucleus can eject a neutron. Two examples and their decay products:
  • 9Be + >1.7 Mev photon → 1 neutron + 2 4He
  • 2H (deuterium) + >2.26 MeV photon → 1 neutron + 1H
Sealed Tube Neutron Generators
Some accelerator-based neutron generators exist that work by inducing fusion between beams of deuterium and/or tritium ions and metal hydride targets which also contain these isotopes.

Medium Sized Devices[edit]

Plasma Focus and Plasma Pinch Devices
The plasma focus neutron source (see Plasma focus, not to be confused with the so-called Farnsworth-Hirsch fusor) produces controlled nuclear fusion by creating a dense plasma within which ionized deuterium and/or tritium gas is heated to temperatures sufficient for creating fusion.
Light Ion Accelerators
Traditional particle accelerators with hydrogen (H), deuterium (D), or tritium (T) ion sources may be used to produce neutrons using targets of deuterium, tritium, lithium, beryllium, and other low-Z materials. Typically these accelerators operate with energies in the > 1 MeV range,
High Energy Bremsstrahlung Photoneutron/photofission Systems
Neutrons (so called photoneutrons) are produced when photons above the nuclear binding energy of a substance are incident on that substance, causing it to undergo giant dipole resonance after which it either emits a neutron or undergoes fission. The number of neutrons released by each fission event is dependent on the substance. Typically photons begin to produce neutrons on interaction with normal matter at energies of about 7 to 40 MeV, which means that megavoltage photon radiotherapy facilities may produce neutrons as well, and require special shielding for them. In addition, electrons of energy over about 50 MeV may induce giant dipole resonance in nuclides by a mechanism which is the inverse of internal conversion, and thus produce neutrons by a mechanism similar to that of photoneutrons. [1]

Large Sized Devices[edit]

Nuclear Fission Reactors
Nuclear fission which takes place within in a reactor produces very large quantities of neutrons and can be used for a variety of purposes including power generation and experiments.
Nuclear Fusion Systems
Nuclear fusion, the combining of the heavy isotopes of hydrogen, also has the potential to produces large quantities of neutrons. Small scale fusion systems exist for research purposes at many universities and laboratories around the world. A small number of large scale nuclear fusion systems also exist including the National Ignition Facility in the USA, JET in the UK, and soon the recently started ITER experiment in France.
High Energy Particle Accelerators
A spallation source is a high-flux source in which protons that have been accelerated to high energies hit a target material, prompting the emission of neutrons.

Neutron flux[edit]

For most applications, a higher neutron flux is always better (since it reduces the time required to conduct the experiment, acquire the image, etc.). Amateur fusion devices, like the fusor, generate only about 300 000 neutrons per second. Commercial fusor devices can generate on the order of 109 neutrons per second, which corresponds to a usable flux of less than 105 n/(cm² s). Large neutron beamlines around the world achieve much greater flux. Reactor-based sources now produce 1015 n/(cm² s), and spallation sources generate greater than 1017 n/(cm² s).

See also[edit]

References[edit]

  1. ^ Unknown

External links[edit]