Nitrogen fixation

From Wikipedia, the free encyclopedia
  (Redirected from Nitrogen fixing)
Jump to: navigation, search

Nitrogen fixation is a process by which nitrogen (N2) in the atmosphere is converted into ammonium (NH4+).[1] Atmospheric nitrogen or molecular nitrogen (N2) is relatively inert: it does not easily react with other chemicals to form new compounds. The fixation process frees up the nitrogen atoms from their diatomic form (N2) to be used in other ways.

Nitrogen fixation, natural and synthetic, is essential for all forms of life because nitrogen is required to biosynthesize basic building blocks of plants, animals and other life forms, e.g., nucleotides for DNA and RNA and amino acids for proteins. Therefore nitrogen fixation is essential for agriculture and the manufacture of fertilizer. It is also an important process in the manufacture of explosives (e.g. gunpowder, dynamite, TNT, etc.). Nitrogen fixation occurs naturally in the air by means of lightning.[2][3]

Nitrogen fixation also refers to other biological conversions of nitrogen, such as its conversion to nitrogen dioxide. Microorganisms that can fix nitrogen are prokaryotes (both bacteria and archaea, distributed throughout their respective kingdoms) called diazotrophs. Some higher plants, and some animals (termites), have formed associations (symbiosis) with diazotrophs.

Biological nitrogen fixation[edit]

Schematic representation of the nitrogen cycle. Abiotic nitrogen fixation has been omitted.

Biological nitrogen fixation was discovered by the German agronomist Hermann Hellriegel and Dutch microbiologist Martinus Beijerinck. Biological nitrogen fixation (BNF) occurs when atmospheric nitrogen is converted to ammonia by an enzyme called nitrogenase.[1] The reaction for BNF is:

N2 + 8 H+ + 8 e → 2 NH3 + H2

The process is coupled to the hydrolysis of 16 equivalents of ATP and is accompanied by the co-formation of one molecule of H2. In free-living diazotrophs, the nitrogenase-generated ammonium is assimilated into glutamate through the glutamine synthetase/glutamate synthase pathway.

The microbial genes required for nitrogen fixation are widely distributed in diverse environments.[4][5]

Enzymes responsible for nitrogenase action are very susceptible to destruction by oxygen. Many bacteria cease production of the enzyme in the presence of oxygen.[1] Many nitrogen-fixing organisms exist only in anaerobic conditions, respiring to draw down oxygen levels, or binding the oxygen with a protein such as leghemoglobin.[1]

Microorganisms that fix nitrogen[edit]

Main article: Diazotroph

Diazotrophs are cyanobacteria, e.g. the highly significant trichodesmium, green sulfur bacteria, azotobacteraceae, rhizobia and Frankia.

Cyanobacteria inhabit nearly all illuminated environments on Earth and play key roles in the carbon and nitrogen cycle of the biosphere. In general, cyanobacteria are able to utilize a variety of inorganic and organic sources of combined nitrogen, like nitrate, nitrite, ammonium, urea, or some amino acids. Several cyanobacterial strains are also capable of diazotrophic growth, an ability that may have been present in their last common ancestor in the Archaean.[6] Nitrogen fixation by cyanobacteria in coral reefs can fix twice the amount of nitrogen than on land—around 1.8 kg of nitrogen is fixed per hectare per day. The colonial marine cyanobacterium Trichodesmium is thought to fix nitrogen on such a scale that it accounts for almost half of the nitrogen-fixation in marine systems on a global scale.[7]

Root nodule symbioses[edit]

Legume family[edit]

Plants that contribute to nitrogen fixation include the legume family – Fabaceae – with taxa such as kudzu, clovers, soybeans, alfalfa, lupines, peanuts, and rooibos. They contain symbiotic bacteria called Rhizobia within nodules in their root systems, producing nitrogen compounds that help the plant to grow and compete with other plants. When the plant dies, the fixed nitrogen is released, making it available to other plants and this helps to fertilize the soil.[1][8] The great majority of legumes have this association, but a few genera (e.g., Styphnolobium) do not. In many traditional and organic farming practices, fields are rotated through various types of crops, which usually includes one consisting mainly or entirely of clover or buckwheat (non-legume family Polygonaceae), which are often referred to as "green manure".

Inga alley farming relies on the leguminous genus Inga, a small tropical, tough-leaved, nitrogen-fixing tree.[9]

Non-leguminous[edit]

A sectioned alder tree root nodule.

Although by far the majority of plants able to form nitrogen-fixing root nodules are in the legume family Fabaceae, there are a few exceptions:

  • Parasponia, a tropical genus in the Cannabaceae also able to interact with rhizobia and form nitrogen-fixing nodules[10]
  • Actinorhizal plants such as alder and bayberry can also form nitrogen-fixing nodules, thanks to a symbiotic association with Frankia bacteria. These plants belong to 25 genera[11] distributed among 8 plant families.

The ability to fix nitrogen is far from universally present in these families. For instance, of 122 genera in the Rosaceae, only 4 genera are capable of fixing nitrogen. All these families belong to the orders Cucurbitales, Fagales, and Rosales, which together with the Fabales form a clade of eurosids. In this clade, Fabales were the first lineage to branch off; thus, the ability to fix nitrogen may be plesiomorphic and subsequently lost in most descendants of the original nitrogen-fixing plant; however, it may be that the basic genetic and physiological requirements were present in an incipient state in the last common ancestors of all these plants, but only evolved to full function in some of them:

Family: Genera

Betulaceae: Alnus (alders)

Cannabaceae: Trema

Casuarinaceae:

Allocasuarina
Casuarina
Ceuthostoma
Gymnostoma

......


Coriariaceae: Coriaria

Datiscaceae: Datisca

Elaeagnaceae:

Elaeagnus (silverberries)
Hippophae (sea-buckthorns)
Shepherdia (buffaloberries)

......


Myricaceae:

Comptonia (sweetfern)
Morella
Myrica (bayberries)

......


Rhamnaceae:

Ceanothus
Colletia
Discaria
Kentrothamnus
Retanilla
Talguenea
Trevoa

......


Rosaceae:

Cercocarpus (mountain mahoganies)
Chamaebatia (mountain miseries)
Dryas
Purshia/Cowania (bitterbrushes/cliffroses)

There are also several nitrogen-fixing symbiotic associations that involve cyanobacteria (such as Nostoc):

Industrial nitrogen fixation[edit]

The possibility that atmospheric nitrogen reacts with certain chemicals was first observed by Desfosses in 1828. He observed that mixtures of alkali metal oxides and carbon react at high temperatures with nitrogen. With the use of barium carbonate as starting material the first commercially used process became available in the 1860s developed by Margueritte and Sourdeval. The resulting barium cyanide could be reacted with steam yielding ammonia. In 1898 Adolph Frank and Nikodem Caro decoupled the process and first produced calcium carbide and in a subsequent step reacted it with nitrogen to calcium cyanamide. The Ostwald process for the production of nitric acid was discovered in 1902. Frank-Caro process and Ostwald process dominated the industrial fixation of nitrogen until the discovery of the Haber process in 1909.[12][13] Prior to 1900, Nikola Tesla also experimented with the industrial fixation of nitrogen "by using currents of extremely high frequency or rate of vibration".[14][15]

Haber process[edit]

Main article: Haber process

Artificial fertilizer production is now the largest source of human-produced fixed nitrogen in the Earth's ecosystem. Ammonia is a required precursor to fertilizers, explosives, and other products. The most common method is the Haber process. The Haber process requires high pressures (around 200 atm) and high temperatures (at least 400 °C), routine conditions for industrial catalysis. This highly efficient process uses natural gas as a hydrogen source and air as a nitrogen source.[16]

Much research has been conducted on the discovery of catalysts for nitrogen fixation, often with the goal of reducing the energy required for this conversion. However, such research has thus far failed to even approach the efficiency and ease of the Haber process. Many compounds react with atmospheric nitrogen to give dinitrogen complexes. The first dinitrogen complex to be reported was based on ruthenium,[Ru(NH3)5(N2)]2+.[17]

Ambient nitrogen reduction[edit]

Catalytic chemical nitrogen fixation at temperatures considerably lower than the Haber process is an ongoing scientific endeavor. Nitrogen was converted to ammonia and hydrazine by Alexander E. Shilov in 1970.[18][19]

Few compounds will cleave the N2 molecule. Under an atmosphere of nitrogen, lithium metal converts to lithium nitride. Treatment of the resulting nitride gives ammonia. Another example of homolytic cleavage of dinitrogen under mild conditions was published in 1995. Two equivalents of a molybdenum complex reacted with one equivalent of dinitrogen, creating a triple bonded MoN complex.[20] Since then, this triple bonded complex has been used to make nitriles.[21]

Trimethylsilyl chloride, lithium, and nitrogen molecule react to give tris(trimethylsilyl)amine, under catalysis by nichrome wire or chromium trichloride in tetrahydrofuran.

3 Me3SiCl + 3 Li + 1/2 N2 → (Me3Si)3N + 3 LiCl

Tris(trimethylsilyl)amine can then be used for reaction with α,δ,ω-triketones to give tricyclic pyrroles.[22]

Catalytic systems for converting nitrogen to ammonia have been developed since the 1980s.[23] In 2003 another was reported based on molybdenum compound, a proton source, and a strong reducing agent.[24][25][26][27] However, this catalytic reduction fixates only a few nitrogen molecules.

Synthetic nitrogen reduction Yandulov 2006

In 2011 Arashiba et al. reported yet another system with a catalyst again based on molybdenum but with a diphosphorus pincer ligand.[28]

See also[edit]

References[edit]

  1. ^ a b c d e Postgate, J. (1998). Nitrogen Fixation, 3rd Edition. Cambridge University Press, Cambridge UK. 
  2. ^ Slosson, Edwin (1919). Creative Chemistry. New York: The Century Co. pp. 19–37. 
  3. ^ http://www.biology.ed.ac.uk/archive/jdeacon/microbes/nitrogen.htm
  4. ^ Gaby, J.C.; Buckley, D.H. (2011). "A global census of nitrogenase diversity.". Environmental Microbiology 13 (7): 1790–1799. doi:10.1111/j.1462-2920.2011.02488.x. 
  5. ^ Hoppe, B.; Kahl, T.; Karasch, P.; Wubet, T.; Bauhus, J.; Buscot, F.; Krüger, D. (2014). "Network analysis reveals ecological links between N-fixing bacteria and wood-decaying fungi.". PLoS ONE 9 (2): e88141. doi:10.1371/journal.pone.0088141. 
  6. ^ "The evolution of nitrogen fixation in cyanobacteria" N. Latysheva, V. L. Junker, W. J. Palmer, G. A. Codd and D. Barker; Bioinformatics; 2012: 28(5) pp 603–606; (Article) doi:10.1093/bioinformatics/bts008
  7. ^ Bergman, B.; Sandh, G.; Lin, S.; Larsson, H.; and Carpenter, E. J. (2012). "Trichodesmium – a widespread marine cyanobacterium with unusual nitrogen fixation properties". FEMS Microbiology Reviews 37 (3): 1–17. doi:10.1111/j.1574-6976.2012.00352.x. 
  8. ^ Smil, V (2000). Cycles of Life. Scientific American Library. 
  9. ^ Elkan, Daniel. "Slash-and-burn farming has become a major threat to the world's rainforest". The Guardian, 21 April 2004.
  10. ^ Op den Camp, Rik; Streng, A. et al. (2010). "LysM-Type Mycorrhizal Receptor Recruited for Rhizobium Symbiosis in Nonlegume Parasponia". Science 331 (6019): 909–912. doi:10.1126/science.1198181. 
  11. ^ Dawson, J. O. (2008). "Ecology of actinorhizal plants". Nitrogen-fixing Actinorhizal Symbioses 6. Springer. pp. 199–234. doi:10.1007/978-1-4020-3547-0_8. 
  12. ^ "Die Umwandlungsgleichung Ba(Cn)2 → BaCN2 + C Im Temperaturgebiet von 500 Bis 1000 °C". Zeitschrift für Elektrochemie und angewandte physikalische Chemie 40 (10): 693–698. 1934. doi:10.1002/bbpc.19340401005 (inactive 2014-01-29). 
  13. ^ Curtis, Harry Alfred (1932). Fixed nitrogen. 
  14. ^ http://www.tfcbooks.com/tesla/1900-06-00.htm
  15. ^ Tesla, Nikola (1900). "The Problem of Increasing Human Energy". The Century Magazine. 60 (n.s. v. 38) (1900 May–Oct): 175. 
  16. ^ http://www.epa.gov/watertrain/nitroabstr.html US Enivronmental Protection Agency: Human Alteration of the Global Nitrogen Cycle: Causes and Consequences by Peter M. Vitousek, Chair, John Aber, Robert W. Howarth, Gene E. Likens, Pamela A. Matson, David W. Schindler, William H. Schlesinger, and G. David Tilman
  17. ^ A. D. Allen, C. V. Senoff (1965). "Nitrogenopentammineruthenium(II) complexes". Journal of the Chemical Society, Chemical Communications (24): 621. doi:10.1039/C19650000621. 
  18. ^ "Catalytic reduction of molecular nitrogen in solutions" A. E. Shilov Russian Chemical Bulletin Volume 52, Number 12, 2555–2562, doi:10.1023/B:RUCB.0000019873.81002.60
  19. ^ "Reduction of dinitrogen" Richard R. Schrock PNAS 14 November 2006 vol. 103 no. 46 17087 doi:10.1073/pnas.0603633103
  20. ^ "Dinitrogen Cleavage by a Three-Coordinate Molybdenum(III) Complex" Catalina E. Laplaza and Christopher C. Cummins Science 12 May 1995: 861–863.10.1126/science.268.5212.861
  21. ^ "A Cycle for Organic Nitrile Synthesis via Dinitrogen Cleavage" John J. Curley, Emma L. Sceats, and Christopher C. Cummins J. Am. Chem. Soc., 2006, 128 (43), pp. 14036–14037 doi:10.1021/ja066090a
  22. ^ Brook, Michael A. (2000). Silicon in Organic, Organometallic, and Polymer Chemistry. New York: John Wiley & Sons, Inc. pp. 193–194. 
  23. ^ C. J. Pickett, "The Chatt Cycle and the Mechanism of Enzymic Reduction of Molecular Nitrogen", J. Biol. Inorg. Chem. 1996 1, 601–606.
  24. ^ Synthesis and Reactions of Molybdenum Triamidoamine Complexes Containing Hexaisopropylterphenyl Substituents Dmitry V. Yandulov, Richard R. Schrock, Arnold L. Rheingold, Christopher Ceccarelli, and William M. Davis Inorg. Chem.; 2003; 42(3) pp 796–813; (Article) doi:10.1021/ic020505l
  25. ^ "Catalytic Reduction of Dinitrogen to Ammonia at a Single Molybdenum Center" Dmitry V. Yandulov and Richard R. Schrock Science 4 July 2003: Vol. 301. no. 5629, pp. 76–78 doi:10.1126/science.1085326
  26. ^ The catalyst is based on molybdenum(V) chloride and tris(2-aminoethyl)amine substituted with three very bulky hexa-isopropylterphenyl (HIPT) groups. Nitrogen adds end-on to the molybdenum atom, and the bulky HIPT substituents prevent the formation of the stable and nonreactive Mo-N=N-Mo dimer, and the nitrogen is reduced in an isolated pocket. The proton donor is a pyridinium cation, which is accompanied by a tetraborate counter ion. The reducing agent is decamethylchromocene. All ammonia formed is collected as the HCl salt by trapping the distillate with a HCl solution
  27. ^ Note also that, although the dinitrogen complex is shown in brackets, this species can be isolated and characterized. Here the brackets do not indicate that the intermediate is not observed.
  28. ^ Kazuya Arashiba, Yoshihiro Miyake Yoshiaki Nishibayashi "A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia" Nature Chemistry Volume: 3, Pages: 120–125 Year published:(2011) doi:10.1038/nchem.906

External links[edit]