Noncentral F-distribution

From Wikipedia, the free encyclopedia
  (Redirected from Noncentral F distribution)
Jump to: navigation, search

In probability theory and statistics, the noncentral F-distribution is a continuous probability distribution that is a generalization of the (ordinary) F-distribution. It describes the distribution of the quotient (X/n1)/(Y/n2), where the numerator X has a noncentral chi-squared distribution with n1 degrees of freedom and the denominator Y has a central chi-squared distribution n2 degrees of freedom. It is also required that X and Y are statistically independent of each other.

It is the distribution of the test statistic in analysis of variance problems when the null hypothesis is false. The noncentral F-distribution is used to find the power function of such a test.

Occurrence and specification[edit]

If X is a noncentral chi-squared random variable with noncentrality parameter \lambda and \nu_1 degrees of freedom, and Y is a chi-squared random variable with \nu_2 degrees of freedom that is statistically independent of X, then


is a noncentral F-distributed random variable. The probability density function for the noncentral F-distribution is [1]

=\sum\limits_{k=0}^\infty\frac{e^{-\lambda/2}(\lambda/2)^k}{ B\left(\frac{\nu_2}{2},\frac{\nu_1}{2}+k\right) k!}

when f\ge0 and zero otherwise. The degrees of freedom \nu_1 and \nu_2 are positive. The noncentrality parameter \lambda is nonnegative. The term B(x,y) is the beta function, where


The cumulative distribution function for the noncentral F-distribution is

F(x|d_1,d_2,\lambda)=\sum\limits_{j=0}^\infty\left(\frac{\left(\frac{1}{2}\lambda\right)^j}{j!}e^{-\frac{\lambda}{2}}\right)I\left(\frac{d_1x}{d_2 + d_1x}\bigg|\frac{d_1}{2}+j,\frac{d_2}{2}\right)

where I is the regularized incomplete beta function.

The mean and variance of the noncentral F-distribution are

\mbox{Does not exist}


\mbox{Does not exist}

Differential equation

\left\{4 x \left(\nu _2+\nu _1 x\right){}^2 f''(x)+f'(x) \left(-2 \nu _2^2 \nu _1+8 \nu _2^2+16
   \nu _1^2 x^2+4 \nu _2 \nu _1^2 x^2-2 \lambda  \nu _2 \nu _1 x-2 \nu _2 \nu _1^2 x+4 \nu _2^2
   \nu _1 x+24 \nu _2 \nu _1 x\right)+\nu _1 \left(\nu _2+2\right) f(x) \left(-\lambda  \nu
   _2-\nu _2 \nu _1+4 \nu _2+4 \nu _1 x+\nu _2 \nu _1 x\right)=0,f(1)=\frac{e^{-\lambda /2} \nu
   _1^{\frac{\nu _1}{2}} \nu _2^{\frac{\nu _2}{2}} \left(\nu _1+\nu _2\right){}^{\frac{1}{2}
   \left(-\nu _1-\nu _2\right)} \, _1F_1\left(\frac{1}{2} \left(\nu _1+\nu _2\right);\frac{\nu
   _1}{2};\frac{\lambda  \nu _1}{2 \left(\nu _1+\nu _2\right)}\right)}{B\left(\frac{\nu
   _1}{2},\frac{\nu _2}{2}\right)},f'(1)=\frac{e^{-\lambda /2} \nu _1^{\frac{\nu _1}{2}} \nu
   _2^{\frac{\nu _2}{2}} \left(\nu _1+\nu _2\right){}^{\frac{1}{2} \left(-\nu _1-\nu
   _2-2\right)} \left(\nu _2 \left(\lambda  \, _1F_1\left(\frac{1}{2} \left(\nu _1+\nu
   _2+2\right);\frac{1}{2} \left(\nu _1+2\right);\frac{\lambda  \nu _1}{2 \left(\nu _1+\nu
   _2\right)}\right)-2 \, _1F_1\left(\frac{1}{2} \left(\nu _1+\nu _2\right);\frac{\nu
   _1}{2};\frac{\lambda  \nu _1}{2 \left(\nu _1+\nu _2\right)}\right)\right)-2 \nu _1 \,
   _1F_1\left(\frac{1}{2} \left(\nu _1+\nu _2\right);\frac{\nu _1}{2};\frac{\lambda  \nu _1}{2
   \left(\nu _1+\nu _2\right)}\right)\right)}{2 B\left(\frac{\nu _1}{2},\frac{\nu

Special cases[edit]

When λ = 0, the noncentral F-distribution becomes the F-distribution.

Related distributions[edit]

Z has a noncentral chi-squared distribution if

 Z=\lim_{\nu_2\to\infty}\nu_1 F

where F has a noncentral F-distribution.


The noncentral F-distribution is implemented in the R language (e.g., pf function), in MATLAB (ncfcdf, ncfinv, ncfpdf, ncfrnd and ncfstat functions in the statistics toolbox) in Mathematica (NoncentralFRatioDistribution function), in NumPy (random.noncentral_f), and in Boost C++ Libraries.[2]

A collaborative wiki page implements an interactive online calculator, programmed in R language, for noncentral t, chisquare, and F, at the Institute of Statistics and Econometrics, School of Business and Economics, Humboldt-Universität zu Berlin.[3]


  1. ^ S. Kay, Fundamentals of Statistical Signal Processing: Detection Theory, (New Jersey: Prentice Hall, 1998), p. 29.
  2. ^ John Maddock, Paul A. Bristow, Hubert Holin, Xiaogang Zhang, Bruno Lalande, Johan Råde. "Noncentral F Distribution: Boost 1.39.0". Retrieved 20 August 2011. 
  3. ^ Sigbert Klinke (10 December 2008). "Comparison of noncentral and central distributions". Humboldt-Universität zu Berlin. 


External links[edit]