Nontotient

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In number theory, a nontotient is a positive integer n which is not a totient number: it is not in the range of Euler's totient function φ, that is, the equation φ(x) = n has no solution x. In other words, n is a nontotient if there is no integer x that has exactly n coprimes below it. All odd numbers are nontotients, except 1, since it has the solutions x = 1 and x = 2. The first fifty even nontotients are

14, 26, 34, 38, 50, 62, 68, 74, 76, 86, 90, 94, 98, 114, 118, 122, 124, 134, 142, 146, 152, 154, 158, 170, 174, 182, 186, 188, 194, 202, 206, 214, 218, 230, 234, 236, 242, 244, 246, 248, 254, 258, 266, 274, 278, 284, 286, 290, 298, 302 (sequence A005277 in OEIS)

An even nontotient may be one more than a prime number, but never one less, since all numbers below a prime number are, by definition, coprime to it. To put it algebraically, for p prime: φ(p) = p − 1. Also, a pronic number n(n − 1) is certainly not a nontotient if n is prime since φ(p2) = p(p − 1).

There are infinitely many nontotient numbers: indeed, there are infinitely many distinct primes p such that all numbers of the form 2ap are nontotient, and every odd number has a multiple which is a nontotient.

References[edit]