Nontotient

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In number theory, a nontotient is a positive integer n which is not a totient number: it is not in the range of Euler's totient function φ, that is, the equation φ(x) = n has no solution x. In other words, n is a nontotient if there is no integer x that has exactly n coprimes below it. All odd numbers are nontotients, except 1, since it has the solutions x = 1 and x = 2. The first few even nontotients are

14, 26, 34, 38, 50, 62, 68, 74, 76, 86, 90, 94, 98, 114, 118, 122, 124, 134, 142, 146, 152, 154, 158, 170, 174, 182, 186, 188, 194, 202, 206, 214, 218, 230, 234, 236, 242, 244, 246, 248, 254, 258, 266, 274, 278, 284, 286, 290, 298, ... (sequence A005277 in OEIS)

Least k such that the totient of k is n are

0, 1, 3, 0, 5, 0, 7, 0, 15, 0, 11, 0, 13, 0, 0, 0, 17, 0, 19, 0, 25, 0, 23, 0, 35, 0, 0, 0, 29, 0, 31, 0, 51, 0, 0, 0, 37, 0, 0, 0, 41, 0, 43, 0, 69, 0, 47, 0, 65, 0, 0, 0, 53, 0, 81, 0, 87, 0, 59, 0, 61, 0, 0, 0, 85, 0, 67, 0, 0, 0, 71, 0, 73, ... (sequence A049283 in OEIS)

Greatest k such that the toitent of k is n are

0, 2, 6, 0, 12, 0, 18, 0, 30, 0, 22, 0, 42, 0, 0, 0, 60, 0, 54, 0, 66, 0, 46, 0, 90, 0, 0, 0, 58, 0, 62, 0, 120, 0, 0, 0, 126, 0, 0, 0, 150, 0, 98, 0, 138, 0, 94, 0, 210, 0, 0, 0, 106, 0, 162, 0, 174, 0, 118, 0, 198, 0, 0, 0, 240, 0, 134, 0, 0, 0, 142, 0, 270, ... (sequence A057635 in OEIS)

Number of ks such that φ(k) = n are (conjecture: there are no 1's in this sequence expect the zeroth term)

1, 2, 3, 0, 4, 0, 4, 0, 5, 0, 2, 0, 6, 0, 0, 0, 6, 0, 4, 0, 5, 0, 2, 0, 10, 0, 0, 0, 2, 0, 2, 0, 7, 0, 0, 0, 8, 0, 0, 0, 9, 0, 4, 0, 3, 0, 2, 0, 11, 0, 0, 0, 2, 0, 2, 0, 3, 0, 2, 0, 9, 0, 0, 0, 8, 0, 2, 0, 0, 0, 2, 0, 17, ... (sequence A014197 in OEIS)

An even nontotient may be one more than a prime number, but never one less, since all numbers below a prime number are, by definition, coprime to it. To put it algebraically, for p prime: φ(p) = p − 1. Also, a pronic number n(n − 1) is certainly not a nontotient if n is prime since φ(p2) = p(p − 1).

There are infinitely many nontotient numbers: indeed, there are infinitely many distinct primes p (such as 78557 and 271129, see Sierpinski number) such that all numbers of the form 2ap are nontotient, and every odd number has a multiple which is a nontotient.

References[edit]