Nuclear pulse propulsion

From Wikipedia, the free encyclopedia
Jump to: navigation, search
An artist's conception of the Project Orion "basic" spacecraft, powered by nuclear pulse propulsion.

Nuclear pulse propulsion or external pulsed plasma propulsion, is a theoretical method of spacecraft propulsion that uses nuclear explosions for thrust.[1] It was first developed as Project Orion by DARPA, after a suggestion by Stanislaw Ulam in 1947.[2] Newer designs using inertial confinement fusion have been the baseline for most post-Orion designs, including Project Daedalus and Project Longshot.

Project Orion[edit]

A nuclear pulse propulsion unit, the explosive charge ablatively vaporizes the propellant, propelling it away from the charge, and simultaneously creating a plasma out of the propellant, the propellant then goes on to impact the pusher plate at the bottom of the Orion spacecraft, imparting a pulse of 'pushing' energy.

Project Orion was the first serious attempt to design a nuclear pulse rocket. The design effort was carried out at General Atomics in the late 1950s and early 1960s. The idea of Orion was to react small directional nuclear explosives against a large steel pusher plate attached to the spacecraft with shock absorbers. Efficient directional explosives maximized the momentum transfer, leading to specific impulses in the range of 6,000 seconds, or about thirteen times that of the Space Shuttle Main Engine. With refinements a theoretical maximum of 100,000 seconds (1 MN·s/kg) might be possible. Thrusts were in the millions of tons, allowing spacecraft larger than 8 × 106 tons to be built with 1958 materials.[3]

The reference design was to be constructed of steel using submarine-style construction with a crew of more than 200 and a vehicle takeoff weight of several thousand tons. This low-tech single-stage reference design would reach Mars and back in four weeks from the Earth's surface (compared to 12 months for NASA's current chemically powered reference mission). The same craft could visit Saturn's moons in a seven-month mission (compared to chemically powered missions of about nine years).

A number of engineering problems were found and solved over the course of the project, notably related to crew shielding and pusher-plate lifetime. The system appeared to be entirely workable when the project was shut down in 1965, the main reason being given that the Partial Test Ban Treaty made it illegal (however, before the treaty, the US and Soviet Union had already detonated at least nine nuclear bombs, including thermonuclear bombs, in space, i.e., at altitudes over 100 km: see high altitude nuclear explosions). There were also ethical issues with launching such a vehicle within the Earth's magnetosphere: calculations showed that the fallout from each takeoff would kill between 1 and 10 people.[4]

One useful mission for this near-term technology would be to deflect an asteroid that could collide with the earth, depicted dramatically in the 1998 film Deep Impact. The extremely high performance would permit even a late launch to succeed, and the vehicle could effectively transfer a large amount of kinetic energy to the asteroid by simple impact, and in the event of an imminent asteroid impact a few predicted deaths from fallout would probably not be considered prohibitive. Also, an automated mission would eliminate the most problematic issues of the design: the shock absorbers.

Orion is one of very few interstellar space drives that could theoretically be constructed with available technology, as discussed in a 1968 paper, Interstellar Transport by Freeman Dyson.

Project Daedalus[edit]

Main article: Project Daedalus

Project Daedalus was a study conducted between 1973 and 1978 by the British Interplanetary Society (BIS) to design a plausible interstellar unmanned spacecraft that could reach a nearby star within one human scientist's working lifetime or about 50 years. A dozen scientists and engineers led by Alan Bond worked on the project. At the time fusion research appeared to be making great strides, and in particular, inertial confinement fusion (ICF) appeared to be adaptable as a rocket engine.

ICF uses small pellets of fusion fuel, typically lithium deuteride (6Li2H) with a small deuterium/tritium trigger at the center. The pellets are thrown into a reaction chamber where they are hit on all sides by lasers or another form of beamed energy. The heat generated by the beams explosively compresses the pellet, to the point where fusion takes place. The result is a hot plasma, and a very small "explosion" compared to the minimum size bomb that would be required to instead create the necessary amount of fission.

For Daedalus, this process was run within a large electromagnet which formed the rocket engine. After the reaction, ignited by electron beams in this case, the magnet funnelled the hot gas to the rear for thrust. Some of the energy was diverted to run the ship's systems and engine. In order to make the system safe and energy efficient, Daedalus was to be powered by a helium-3 fuel that would have had to be collected from Jupiter.

Designing an ICF system efficient enough for a Daedalus design is still considerably beyond current technical capabilities. However some designs are on the drawing board awaiting confirmation.[citation needed]

Medusa[edit]

Conceptual diagram of a Medusa propulsion spacecraft, showing: (A) the payload capsule, (B) the winch mechanism, (C) the main tether cable, (D) riser tethers, and (E) the parachute mechanism
Operating sequence of the Medusa propulsion system. This diagram shows the operating sequence of a Medusa propulsion spacecraft (1) Starting at moment of bomb / pulse unit firing, (2) As the bomb's explosion pulse reaches the parachute canopy, (3) Pushes the canopy, accelerating it away from the bomb explosion as the spacecraft plays out the main tether with the winch, braking as it extends, starting to accelerate the spacecraft, (4) And finally winches the tether back in.

The Medusa design is a type of nuclear pulse propulsion which has more in common with solar sails than with conventional rockets. It was proposed in the 1990s in another BIS project when it became clear that ICF did not appear to be able to run both the engine and the ship, as previously believed.

A Medusa spacecraft would deploy a large sail ahead of it, attached by cables, and then launch nuclear explosives forward to detonate between itself and its sail. The sail would be accelerated by the impulse, and the spacecraft would follow.

Medusa performs better than the classical Orion design because its sail intercepts more of the bomb's blast, its shock-absorber stroke is much longer, and all its major structures are in tension and hence can be quite lightweight. It also scales down better. Medusa-type ships would be capable of a specific impulse between 50,000 and 100,000 seconds (500 to 1000 kN·s/kg).

The January 1993[5] and June 1994[6] issues of the Journal of the British Interplanetary Society (JBIS) have articles on Medusa.

Project Longshot[edit]

Main article: Project Longshot

Project Longshot was a NASA-sponsored research project carried out in conjunction with the US Naval Academy in the late 1980s.[7] Longshot was in some ways a development of the basic Daedalus concept, in that it used magnetically funneled ICF as a rocket. The key difference was that they felt that the reaction could not power both the rocket and the systems, and instead included a 300 kW conventional nuclear reactor for running the ship. The added weight of the reactor reduced performance somewhat, but even using LiD fuel it would be able to reach Alpha Centauri, the closest solar system to our own, in 100 years (approx. velocity of 13,411 km/s, at a distance of 4.5 light years - equivalent to 4.5% of light speed).

Antimatter-catalyzed nuclear pulse propulsion[edit]

In the mid-1990s research at the Pennsylvania State University led to the concept of using antimatter to catalyze nuclear reactions. In short, antiprotons would react inside the nucleus of uranium, causing a release of energy that breaks the nucleus apart as in conventional nuclear reactions. Even a small number of such reactions can start the chain reaction that would otherwise require a much larger volume of fuel to sustain. Whereas the "normal" critical mass for plutonium is about 11.8 kilograms, with antimatter catalyzed reactions this could be well under one gram.

Several rocket designs using this reaction were proposed, ones using all-fission for interplanetary missions, and others using fission-fusion (effectively a very small version of Orion's bombs) for interstellar ones.

MSNW Magneto-Inertial Fusion Driven Rocket[edit]

Concept graphic of a Fusion Driven Rocket powered Spacecraft arriving at Mars

NASA started funding MSNW LLC and the University of Washington in 2011 to study and develop a fusion rocket through the NASA Innovative Advanced Concepts NIAC Program.[8] The rocket uses a form of magneto-inertial fusion to produce a direct thrust fusion rocket. Powerful magnetic fields cause large metal rings (likely made of lithium, where a set for one pulse has a total mass of 365 gram) to collapse around the deuterium-tritium plasma, compressing it to a fusion state. Energy from these fusion reactions heat up and ionize the shell of metal formed by the crushed rings. The hot, ionized metal is shot out of a magnetic rocket nozzle at a high speed (up to 30 km/s). Repeating this process roughly every minute would propel the spacecraft.[9] This approach uses Foil Liner Compression to create a fusion reaction of the proper energy scale to be used for space propulsion. The proof of concept experiment in Redmond, Washington, will use aluminum liners for compression. However, the actual rocket design will run with lithium liners.[10][11]

As of April 2013, MSNW has demonstrated subcomponents of the systems: heating deuterium plasma up to fusion temperatures and have concentrated the magnetic fields needed to create fusion. They plan to put the two technologies together for a test before the end of 2013.[12][13]

They will later be scaled up in power and plan to add the necessary fusion fuel (deuterium) by the end (Sept 2014) of the NIAC Study.[14]

Use in fiction[edit]

See also[edit]

References[edit]

  1. ^ Bonometti, Joseph A.; P. Jeff Morton. "External Pulsed Plasma Propulsion (EPPP) Analysis Maturation". Nasa Marshall Space Flight Center. Retrieved December 24, 2008. 
  2. ^ "History of Project Orion". Orion Drive. 2008–2009. 
  3. ^ General Dynamics Corp. (January 1964). "Nuclear Pulse Vehicle Study Condensed Summary Report (General Dynamics Corp.)" (PDF). U.S. Department of Commerce National Technical Information Service. Retrieved December 24, 2008. 
  4. ^ Dyson, George. Project Orion – The Atomic Spaceship 1957-1965. Penguin. ISBN 0-14-027732-3
  5. ^ Solem, Johndale C. (January 1993). "Medusa: Nuclear explosive propulsion for interplanetary travel". Journal of the British Interplanetary Society 46 (1): 21–26. Bibcode:1993JBIS...46R..21S. ISSN 0007-084X. 
  6. ^ Solem, Johndale C. (June 1994). "Nuclear explosive propulsion for interplanetary travel: Extension of the MEDUSA concept for higher specific impulse". Journal of the British Interplanetary Society 47 (6): 229–238. Bibcode:1994JBIS...47..229S. ISSN 0007-084X. 
  7. ^ Beals, Keith A.; et al. "Project Longshot An Unmanned Probe To Alpha Centauri". NASA. Retrieved March 14, 2011. 
  8. ^ 2011 NIAC Phase I Selections http://www.nasa.gov/directorates/spacetech/niac/slough_nuclear_propulsion.html
  9. ^ “Nuclear Propulsion based on Inductively Driven Liner Compression of Fusion Plasmoids”. Slough, J., Kirtley, D., AIAA Aerospace Sciences Conference, 2011.http://msnwllc.com/Papers/FDR_AIAA_2011.pdf
  10. ^ Mission Design Architecture for the Fusion Driven Rocket. Pancotti, A., Slough, J. Kirtley, D. et al. AIAA Joint Propulsion Conference (2012).http://msnwllc.com/Papers/FDR_JPC_2012.pdf
  11. ^ http://www.nbcnews.com/science/scientists-develop-fusion-rocket-technology-lab-aim-mars-1B9235633
  12. ^ Diep, Francie (2013-04-08). "Fusion Rocket Would Shoot People To Mars In 30 Days". Popsci. Retrieved 2013-04-12. 
  13. ^ http://www.nasa.gov/pdf/716077main_Slough_2011_PhI_Fusion_Rocket.pdf
  14. ^ The Fusion Driven Rocket. Slough, J., Pancotti, A., Kirtley, D., Pfaff, M., Pihl, C., Votroubek, G., NASA NIAC( Phase II) Symposium (Nov, 2012).http://www.msnwllc.com/Papers/NIAC_PhaseII_FDR.pdf