Nutrient management

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Nitrogen fertilizer being applied to growing corn (maize) in a contoured, no-tilled field in Iowa.

Nutrient management is the science and art directed to link soil, crop, weather, and hydrologic factors with cultural, irrigation, and soil and water conservation practices to achieve the goals of optimizing nutrient use efficiency, yields, crop quality, and economic returns, while reducing off-site transport of nutrients that may impact the environment.[1] Nutrient management is the skillful task of matching a specific field soil, climate, and crop management conditions to rate, source, timing, and place (commonly known as the 4R nutrient stewardship) of nutrient application.[2]

Some important factors that need to be considered when managing nutrients include (a) the application of nutrients considering the achievable optimum yields and, in some cases, crop quality; (b) the management, application, and timing of nutrients using a budget based on all sources and sinks active at the site; and (c) the management of soil, water, and crop to minimize the off-site transport of nutrients from nutrient leaching out of the root zone, surface runoff, and volatilization (or other gas exchanges).

There can be potential interactions because of differences in nutrient pathways and dynamics. For instance, practices that reduce the off-site surface transport of a given nutrient may increase the leaching losses of other nutrients. These complex dynamics present nutrient managers the difficult task of integrating soil, crop, weather, hydrology, and management practices to achieve the best balance for maximizing profit while contributing to the conservation of our biosphere.

Nutrient management plan[edit]

A crop nutrient management plan is a tool that farmers can use to increase the efficiency of all the nutrient sources a crop uses while reducing production and environmental risk, ultimately increasing profit. It is generally agreed that there are ten fundamental components of a Crop Nutrient Management Plan. Each component is critical to helping analyze each field and improve nutrient efficiency for the crops grown. These components include:[3]

  • Field Map: The map, including general reference points (such as streams, residences, wellheads etc.), number of acres, and soil types is the base for the rest of the plan.
  • Soil Test: How much of each nutrient (N-P-K and other critical elements such as pH and organic matter) is in the soil profile? The soil test is a key component needed for developing the nutrient rate recommendation.
  • Crop Sequence: Did the crop that grew in the field last year (and in many cases two or more years ago) fix nitrogen for use in the following years? Has long-term no-till increased organic matter? Did the end-of-season stalk test show a nutrient deficiency? These factors also need to be factored into your plan.
  • Estimated Yield: Factors that affect yield are numerous and complex. A field’s soils, drainage, insect, weed and disease pressure, rotation and many other factors differentiate one field from another. This is why using historic yields is important in developing yield estimates for next year. Accurate yield estimates can dramatically improve nutrient use efficiency.
  • Sources and Forms: The sources and forms of available nutrients can vary from farm-to-farm and even field-to-field. For instance, manure fertility analysis, storage practices and other factors will need to be included in a nutrient management plan. Manure nutrient tests/analysis are one way to determine the fertility of it. Nitrogen fixed from a previous year’s legume crop and residual affects of manure also effects rate recommendations. Many other nutrient sources should also be factored into this plan.
  • Sensitive Areas: What’s out of the ordinary about a field’s plan? Is it irrigated? Next to a stream or lake? Especially sandy in one area? Steep slope or low area? Manure applied in one area for generations due to proximity of dairy barn? Extremely productive—or unproductive—in a portion of the field? Are there buffers that protect streams, drainage ditches, wellheads, and other water collection points? How far away are the neighbors? What’s the general wind direction? This is the place to note these and other special conditions that need to be considered.
  • Recommended rates: Here’s the place where science, technology, and art meet. Given everything you’ve noted, what is the optimum rate of N, P, K, lime and any other nutrients? While science tells us that a crop has changing nutrient requirements during the growing season, a combination of technology and farmer’s management skills assure optimum nutrient availability at all stages of growth. No-till corn generally requires starter fertilizer to give the seedling a healthy start.
  • Recommended timing: When does the soil temperature drop below 50 degrees? Will a N stabilizer be used? What’s the tillage practice? Strip-till corn and no-till often require different timing approaches than seed planted into a field that’s been tilled once with a field cultivator. Will a starter fertilizer be used to give the seedling a healthy start? How many acres can be covered with available labor (custom or hired) and equipment? Does manure application in a farm depend on a custom applicator’s schedule? What agreements have been worked out with neighbors for manure use on their fields? Is a neighbor hosting a special event? All these factors and more will likely figure into the recommended timing.
  • Recommended methods: Surface or injected? While injection is clearly preferred, there may be situations where injection is not feasible (i.e. pasture, grassland). Slope, rainfall patterns, soil type, crop rotation and many other factors determine which method is best for optimizing nutrient efficiency (availability and loss) in farms. The combination that’s right in one field may differ in another field even with the same crop.
  • Annual review and update: Even the best managers are forced to deviate from their plans. What rate was actually applied? Where? Using which method? Did an unusually mild winter or wet spring reduce soil nitrate? Did a dry summer, disease, or some other unusual factor increase nutrient carryover? These and other factors should be noted. It’s easier to make notes throughout the year than to remember back six to 10 months.

When such a plan is designed for animal feeding operations (AFO), it may be termed a "manure management plan." In the United States, some regulatory agencies recommend or require that farms implement these plans in order to prevent water pollution. The U.S. Natural Resources Conservation Service (NRCS) has published guidance documents on preparing a comprehensive nutrient management plan (CNMP) for AFOs.[4][5]

The International Plant Nutrition Institute has published a 4R plant nutrition manual for improving the management of plant nutrition. The manual outlines the scientific principles behind each of the four R’s or “rights” and discusses the adoption of 4R practices on the farm, approaches to nutrient management planning, and measurement of sustainability performance.[6]

See also[edit]

References[edit]

External links[edit]