Offspring

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In biology, offspring is the product of reproduction of a new organism produced by one or more parents.

Collective offspring may be known as a brood or progeny in a more general way. This can refer to a set of simultaneous offspring, such as the chicks hatched from one clutch of eggs, or to all the offspring, as with the honeybee.

Human offspring (descendants) are referred to as children (without reference to age, thus one can refer to a parent's "minor children" or "adult children" or "infant children" or "teenage children"); male children are sons and female children are daughters. See kinship and descent. Offspring can occur after mating or after artificial insemination.

The offspring of an individual contains many parts and properties that are very precise and accurate in what they consist of, and thus what they define for. As the offspring of a new species, also known as a child or f1 generation, consist of genes of the father and the mother, which is also known as the parent generation.[1] Each of these offspring contains numerous genes which have coding for specific tasks and properties. Males and females both contribute equally to the genotypes of their offspring, in which gametes fuse and form. An important aspect of the formation of the parent offspring is the chromosome, which is a structure of DNA which contains many genes.[2]

To focus more on the offspring and how it results in the formation of the f1 generation, is an inheritance called sex-linkage,[3] which is a gene which is located on the sex chromosome and patterns of these inheritance differ in both male and female. The explanation that proves the theory of the offspring’s having genes from both parent generations, is proven through a process called crossing-over, which consists of taking genes from the male chromosomes and genes from the female chromosome, resulting in a process of meiosis occurring, and leading to the splitting of the chromosomes evenly.[4] Depending on which genes are dominantly expressed in the gene will result in the sex of the offspring. The male will always give an X chromosome, whereas the female, depending on the situation, will either give an X chromosome or a Y chromosome. If a female offspring is produced, the gene will consist of an X and a Y chromosome. If two X chromosomes are expressed and produced, it produces a male offspring.[5]

Cloning is the production of an offspring which represents the identical genes as its parent. Reproductive cloning begins with the removal of the nucleus from an egg, which holds the genetic material.[6] In order to clone an organ, a stem cell is to be produced and then utilized to clone that specific organ.[7] A common misconception of cloning is that it produces an exact copy of the parent being cloned. Ccloning copies the DNA/genes of the parent and then creates a genetic duplicate. The clone will not be a similar copy as he or she will grow up in different surroundings from the clone and may encounter different opportunities and experiences. Although mostly positive, cloning also faces some setbacks in terms of ethics and human health.

Though cell division and DNA replication is a vital part of one surviving, there are many steps involved such as enzymes and proteins. Thus, many errors and problems that can occur, which are called mutations. A mutation is any permanent change in an organism's DNA and thus change in offspring’s.[8] Some mutations can be good as they result in random evolution periods in which may be good for the species, but most mutations are bad as they can change the genotypes of offspring, which can result in changes that harm the specie.

See also[edit]

References[edit]

  1. ^ "chromosome". Retrieved 1 April 2014. 
  2. ^ "chromosome". Retrieved 1 April 2014. 
  3. ^ "chromosome". Retrieved 1 April 2014. 
  4. ^ "what is a gene". Retrieved 1 April 2014. 
  5. ^ "what is a gene". Retrieved 1 April 2014. 
  6. ^ "cloning". Retrieved 1 April 2014. 
  7. ^ "cloning". Retrieved 1 April 2014. 
  8. ^ "mutation". Retrieved 1 April 2014.