Optical sound

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Edge of a 35mm film print showing the soundtracks. The stereo optical sound strip is located on the right, with waveforms for left and right channels.
To the far left is the SDDS digital track (blue area to the left of the sprocket holes), then the Dolby Digital (grey area between the sprocket holes labelled with the Dolby "Double-D" logo in the middle), and to the right of the analog optical sound is the DTS time code (the dashed line to the far right.)
A transparent program disc imprinted with concentric optical sound tracks, used for the Optigan musical organ

Optical sound is a means of storing sound recordings on transparent film. The technology was first developed in the 1920s as a sound-on-film format for motion pictures, eventually superseding all of other sound film technologies until the advent of digital sound would become the standard in cinema projection booths. Optical sound has also been used for multitrack recording and for creating effects in some musical synthesizers.

Naval use prior to motion pictures: 1914-21[edit]

Optical sound was first developed by several inventors with an interest in wireless telegraphy through transmission of light, primarily for ship-to-ship communications. The idea was that sound pulses could be electrically converted into light pulses, beamed out from one ship and picked up by another, where the light pulses would then be re-converted back into sound.

A pioneer in this technology was American physicist Theodore Case. While studying at Yale, Case became interested in using modulated light as a means to transmit and record speech. In 1914, he opened the Case Research Lab to experiment with the photo-electric properties of various materials, leading to the development of the Thallofide (short for thallium oxysulfide), a light-sensitive vacuum tube. The Thallofide tube was originally used by the United States Navy in a top secret ship-to-ship infrared signaling system developed at Case's lab with his assistant Earl Sponable. Case and Sponable's system was first tested off the shores of New Jersey in 1917, and attending the test was Thomas Edison, contracted by the Navy to evaluate new technologies. The test was a success, and the U.S. Navy used the system during and after World War I.[1]

Contemporary to the work of Case and Sponible was Charles A. Hoxie's Pallophotophone (from Greek, meaning "shaking light sound"), manufactured by General Electric (GE). Similar to Case's infrared system used by the Navy, the Pallophotophone was also intended for transoceanic wireless telegraphy, but was then adapted for recording speech. With GE's backing, Hoxie's invention was used in 1921 to record President Calvin Coolidge and others for radio broadcasts.

Case, Sponible and Hoxie's work all became instrumental to the development of sound-on-film in the years following World War I.

Optical sound for film and radio[edit]

Example of a variable-area sound track on the right side of the frames on this 16mm filmstrip. The width of the white area is proportional to the amplitude of the audio signal at each instant.

Most of the inventions that led to optical sound-on-film technology employed the use of an electric lamp, called an exciter, shining through a translucent waveform printed on the edge of a film strip. When the light shines through the film, it is read by a photo-sensitive material and fed through a processor that converts the photovoltaic impulse into an audio signal that is then amplified through a speaker.

Three brands of optical sound-on-film technology emerged in the 1920s: Photofilm, Photophone and Movietone. A fourth major contender for the sound film market was Warner Brothers Vitaphone sound-on-disc system that synchronized large-size (16") phonographic LPs with a film's projector. Many early talkies, such as Warners' 1927 success the Jazz Singer, used Vitaphone discs, but by 1931, optical sound-on-film would supplant the separate sound-on-disc technology.

Photofilm: 1919-26[edit]

All-text advertisement from the Strand Theater, giving dates, times, and performers' names. At the top, a tagline reads, "$10,000 reward paid to any person who finds a phonograph or similar device used in the phonofilms." The accompanying promotional text describes the slate of sound pictures as "the sensation of the century ... Amazing! Astounding! Unbelievable".
Newspaper ad for a 1925 presentation of De Forest Phonofilms shorts, touting their technological distinction: no phonograph.

After the war, Theodore Case and Edward Sponable collaborated with fellow wireless telegraphy pioneer Lee de Forest, inventor of the Audion tube, to apply their optical sound system to motion pictures. De Forest had been granted general patents for a sound-on-film process in 1919, though it was the Case Research Lab's inventions that made de Forest's systems workable. The Case Lab first converted an old silent-film projector into a recording device in 1922, using the projector's light for exposing a soundtrack onto film. The process, which de Forest called Phonofilm, recorded sound as parallel lines of variable shades of gray, photographically recorded as electrical waveforms from a microphone, which were translated back into soundwaves when the movie was projected.

Case fine-tuned this process into an invention called the Aeo-light for use in sound cameras. During filming, audio signals modulated the Aeo-light to expose the film's audio directly inside the camera, streamlining Photofilm's process for synchronizing a motion picture with its soundtrack. In 1924 Sponable focused on the design of these single-system cameras, in which the sound and picture were recorded on the same negative. He approached Bell & Howell to modify one of their cameras to his design, but the results were unsatisfactory. Later the Wall Camera Corporation rebuilt the machine with improved results.

De Forest also worked with early newsreeler Freeman Harrison Owens, who had developed his own patented sound camera by 1921, and spent time in Berlin, working with the Tri-Ergon corporation and investigating European sound film systems.[2] Here he met Finnish inventor Eric Tigerstedt ("Finland's Thomas Edison"), who improved Photofilm's amplification system to be audible in a large theater.

Photofilm was used mainly to record stage performances, speeches, and musical acts in and around New York City, but Hollywood movie studios expressed little interest in the invention. Because the Hollywood studios controlled all major theater chains, de Forest showed his films at independent moveiehouses in a short-form series, akin to vaudeville that included Max and Dave Fleischer's Song Car-Tune. The Fleischers used the Phonofilm process for their animated shorts, which included the now classic "Follow the Bouncing Ball" gimmick.

In 1924 Owens parted ways with de Forest, and Case followed suit in 1925 because of de Forest's taking sole credit for Phonofilm.[3] Meanwhile Hollywood introduced a new method for sound film: the sound-on-disc process developed by Warner Brothers as Vitaphone, with the John Barrymore film Don Juan, released in August 1926. One month later the Phonofilm Company filed for bankruptcy. Case and Sponable went on to create another optical sound-on-film process called Movietone, and the UK rights to Phonfilm were bought up by theater chain owner, Isadore Schlesinger, who used the technology to release short films of British music hall performers through 1929.

The Pallophotophone and Photophone: 1921-27[edit]

While Lee de Forest struggled to market Photofilm, Charles A. Hoxie's Pallophotophone had success as an optical recording device through the support of General Electric. The Pallophotophone utilized the entire width of unsprocketed 35mm Kodak monochrome film to record and replay multiple audio tracks. Unlike Photofilm,this optical sound technology used a photoelectric process that captured audio wave forms generated by a vibrating mirror galvanometer, and was the first effective multitrack recording system, predating magnetic tape multitrack recorders by at least 20 years. From the early 1920s until the early 30s, GE broadcast over 1,000 Pallophotophone recordings from its Schenectady, New York radio station WGY, including speeches by presidents Calvin Coolidge and Herbert Hoover, and inventor-businessmen Thomas Edison and Henry Ford.

By the mid-1920s, GE adapted Hoxie's invention for motion picture sound playback, subsequently marketed as a commercial product by then-GE subsidiary RCA as the RCA Photophone. The first demonstrations of the Photophone, were given in 1926, and in 1927 a sound version (music plus sound effects only) of the silent film Wings, toured to a dozen specially equipped theaters.[4]

Movietone: 1926-39[edit]

A Fox poster for Fox Movietone Follies of 1929 boasts an "all singing, dancing, talking revue."

While Hoxie's work found its way into national theaters through, RCA, Theodore Case and Earl Sponable found a home with the Fox Film Corporation after leaving de Forest and Phonofilm. Case and Sponible's Movietone sound system made several modifications to the earlier Phonofilm system that they had helped to create. One was moving the position of the projector's soundhead from above the picture head (as it had been in Phonofilm), to 14½ inches (368 mm) below the picture head, close to the present day standard. Case also adopted the 24 frames per second speed for Movietone, bringing it in line with the speed already chosen for Warner Brothers' Vitaphone sound-on-disc system, and thus establishing 24 frames per second as the standard speed for all sound films, whether sound-on-disc or sound-on-film.[5][6]

In 1926 Fox hired Sponible, bought Case's patents (they had already acquired Freeman Owens' and Tri-Ergon's),[7] and mass-produced Case's Aeo-light for use in all Movietone News cameras from 1928 to 1939. These cameras recorded all Fox feature films from 1928-1931, the first being F. W. Murnau's Sunrise (1927). As the first professionally produced feature with an optical sound track, it included mostly music and sound effects, with a very few unsynchronized words.

After 1931, Fox's feature film production moved to a two-machine system that Western Electric developed from the RCA Photophone, with the advent of a light-valve invented by Edward C. Wente. In this new system, one camera shot the frames, and a second lens-less "sound camera" served as an optical recorder that was mechanically interlocked with the picture. Fox did continue to make Movietone Newsreels with single-system cameras due to their easy transport.

Optical sound on film to the present day[edit]

A strip of 21st century 35 mm film print frames. The stereo analog optical soundtrack appears Just inside the perforations on the left side of the image. On the far left and right, outside the perforations, is the SDDS soundtrack as an image of a digital signal.

For half a century cinema sound systems were licensed to either RCA or Western Electric, and motion picture producers elected to license one or the other, or even both. This continued until 1976, by which time optical sound recording had been converted to the Western Electric (dubbed "Westrex") stereo variable-area system.

As digital sound became the standard of sound reproduction in the 21st century, 35 and 70mm films have increasingly included a digital version of the soundtrack on the edges of the film strip. Most films continue to be processed with both digital and analog soundtracks so that they can be read by projection systems in any movie theater.

Optical sound in music production[edit]

After General Electric's Pallophotophone fell out of use in the early 1930s, optical multi-track recording did not have a resurgence for nearly three decades when high fidelity and stereophonic recordings became available commercially.

By the 1950s, magnetic tape had become the standard for music production, though some phonograph records were produced from recordings made on 35mm (and, in some cases, or 70mm) sound film. In 1959 Enoch Light began releasing a series of several high fidelity albums recorded on film through his label Command Records, along with albums by Dick Hyman, the Ray Charles Singers, Doc Severinsen and others.[8] These LPs were marketed as audiophile recordings, and boasted superior sound quality,[9] but with few popular artists using this technology and the expensive cost of film, optical sound never took hold as a standard in the music industry.[10]

Optical sound used in musical instruments[edit]

A few musical instrumentss have been manufactured using optical sound for playback.

Keyboard overview of a model 35002 Optigan

In 1971 toy manufacturer Mattel released the Optigan (short for "optical organ), an organ-like synthesizer whose sound library was stored on interchangeable 12" clear acetate "program discs". Each program disc was encoded with 57 concentric optical tracks that spun on a turntable inside the machine. The Optigan then translated the analog waveforms on each disc to an audio signal via an exciter lamp shone through the disc and onto a photoelectric cell. 37 of the program disc's tracks were single notes, and 21 featured chords in different keys and rhythm tracks much the style of a chord organ or accordion. The Optigan came with a "Starter Set" of discs that featured standard instrument sounds and tempos. Other sounds were available through purchase of more disc packs. Mattel ceased production of the Optigan in 1976.[11]

The Orchestron was a version of the Optigan built by Vako Synthesizers Inc. Intended for professional use as an alternative to the Mellotron in the mid-1970s. The Orchestron featured improved recorded sounds over the Optigan,though many professional musicians of note have performed and recorded using Mattel's toy version.[12]

Quintron playing Drum Buddy

The Drum Buddy is an oscillating drum machine that functions as a light-activated theremin. Invented by New Orleans one-man band Mr. Quintron, the Drum Buddy uses a light bulb suspended inside a coffee can, which rotates on a turntable. The can is perforated like the roll of a music box or player piano. When the light shines through the perforations in the rotating can, in strikes any of four photoelectric cells that trigger various electronic effects. To date, Mr. Quintron has built less than 50 of these machines, though they can be heard on his recordings.[13]

Preservation of vintage optical sound sources[edit]

Efforts have only recently been made to preserve early examples of optical sound. While none of GE's original Pallophotophones are known to exist, a few reels of Pallophotophone recordings of radio broadcasts have been found. Unlike movie film, these 35mm reels do not contain sprockets. New players have been built using modern components to recover audio from old reels.[14] Among the material on surviving reels is the earliest known recording of the NBC chimes, a broadcast of a high school basketball match (believed to be the world's second-oldest recording of a sports broadcast) and a historic 1929 recording of the 82-year-old Thomas Edison, with Henry Ford and President Herbert Hoover, speaking on a broadcast commemorating the 50th anniversary of the invention of the incandescent light bulb.[15]

A resurgence in interest in the Optigan has led to a circuit of collectors trading program discs.[11] Though originally marketed as a toy instrument, the Optigan was used by professional musicians to achieve unusual sounds, and the instrument made cameo appearances on recordings by Bruce Haack (1973), Alan Steward (1976), Steve Hackett (1980) and Devo (1981). In the 1990s the Optigan became popular as a vintage synthesizer, and samples of its sounds were released as digital software, making the sounds accessible to musicians not able to obtain the actual instrument. Since then, Optigan music has been used by numerous artists working in popular music, television, film, and is the featured instrument for the band Optaginally Yours.[16]

References[edit]

  1. ^ Fielding, Raymond (1967). A Technological History of Motion Pictures and Television: An Anthology from the Pages of "The Journal of the Society of Motion Pictures and Television". University of California Press. p. 179. ISBN 0-520-03981-5. 
  2. ^ Lee de Forest and Phonofilm at Virtual Broadway website
  3. ^ Case Lab Museum website
  4. ^ History of Sound Motion Pictures, E.W. Kellog, Journal of the SMPTE Vol 64 June 1955
  5. ^ Earl I. Sponable, "Historical Development of Sound Films", The Journal of the Society of Motion Picture Engineers (April 1947), Vol. 48, No. 4
  6. ^ Edward Kellogg, "History of Sound Motion in Pictures", The Journal of the Society of Motion Picture Engineers (June 1955), Vol. 64, p. 295
  7. ^ See Freeman Harrison Owens (1890–1979), op. cit. A number of sources erroneously state that Owens's and/or the Tri-Ergon patents were essential to the creation of the Fox-Case Movietone system.
  8. ^ Grevatt, Ren (Nov 6, 1961). "Record Hunter Displays Sell". Billboard magazine: 15. ISSN 0006-2510. 
  9. ^ Rolontz, Bob (Nov 6, 1961). "Sound Record Sales Boom After 3 Years of Stereo". Billboard magazine: 15. ISSN 0006-2510. 
  10. ^ Edwards, David, with Patrice Eyries, and Mike Callahan. "Command Album Discography". Both Sides Now. Retrieved 6 July 2013. 
  11. ^ a b Markel, Greg. "Grooving to the Sound of an Optigan". National Public Radio. Retrieved 6 July 2013. 
  12. ^ Spence D. (2004-03-18). "Michel Gondry Talks Music". IGN Entertainment, Inc. Retrieved 2010-01-26. 
  13. ^ Quintron, Mr. "Drum Buddy Official Site". Fresh Kills. Retrieved 7 July 2013. 
  14. ^ Interview with Russ DeMuth, "Reinventing the Pallophotophone", 'Edison's Desk' blog
  15. ^ James Grahame, "Recreating The RCA Photophone", Retro Thing website
  16. ^ "Optigan.com". Optigan.com. Retrieved 9 July 2013.