# Order-3 apeirogonal tiling

Order-3 apeirogonal tiling

Poincaré disk model of the hyperbolic plane
Type Hyperbolic regular tiling
Vertex figure ∞.∞.∞
Schläfli symbol {∞,3}
t{∞,∞}
t{(∞,∞,∞)}
Wythoff symbol 3 | ∞ 2
2 ∞ | ∞
∞ ∞ ∞ |
Coxeter diagram

Symmetry group [∞,3], (*∞32)
[∞,∞], (*∞∞2)
[(∞,∞,∞)], (*∞∞∞)
Dual Infinite-order triangular tiling
Properties Vertex-transitive, edge-transitive, face-transitive

In geometry, the order-3 apeirogonal tiling is a regular tiling of the hyperbolic plane. It is represented by the Schläfli symbol {∞,3}, having three regular apeirogons around each vertex. Each apeirogon is inscribed in a horocycle.

The order-2 apeirogonal tiling represents an infinite dihedron in the Euclidean plane as {∞,2}.

## Images

Each apeirogon face is circumscribed by a horocycle, which looks like a circle in a Poincaré disk model, internally tangent to the projective circle boundary.

## Uniform colorings

Like the Euclidean hexagonal tiling, there are 3 uniform colorings of the order-3 apeirogonal tiling, each from different reflective triangle group domains:

Regular Truncation Omnitruncation

{∞,3}

t0,1{∞,∞}

t1,2{∞,∞}

t0,1,2{(∞,∞,∞)}
Hyperbolic triangle groups

[∞,3]

[∞,∞]

[(∞,∞,∞)]

### Symmetry

The dual to this tiling represents the fundamental domains of [(∞,∞,∞)] (*∞∞∞) symmetry. There are 15 small index subgroups (7 unique) constructed from [(∞,∞,∞)] by mirror removal and alternation. Mirrors can be removed if its branch orders are all even, and cuts neighboring branch orders in half. Removing two mirrors leaves a half-order gyration point where the removed mirrors met. In these images fundamental domains are alternately colored black and white, and mirrors exist on the boundaries between colors. The symmetry can be doubled as ∞∞2 symmetry by adding a mirror bisecting the fundamental domain. Dividing a fundamental domain by 3 mirrors creates a ∞32 symmetry.

Small index subgroups of [(∞,∞,∞)] (*∞∞∞)

Fundamental
domains

Subgroup index 1 2 4
Coxeter
(orbifold)
[(∞,∞,∞)]
(*∞3)
[(1+,∞,∞,∞)]
(*∞4)
[(∞,1+,∞,∞)]
(*∞4)
[(∞,∞,1+,∞)]
(*∞4)
[(1+,∞,1+,∞,∞)]
(∞*∞4)
[(∞,1+,∞,1+,∞)]
(∞*∞4)
[(∞,∞+,∞)] [(∞+,∞,∞)] [(∞,∞,∞+)] [(1+,∞,∞,1+,∞)]
(∞*∞4)
[(∞+,∞+,∞)]
(∞∞∞×)
Rotational subgroups
Subgroup index 2 4 8
Coxeter
(orbifold)
[(∞,∞,∞)]+
(∞3)
[(1+,∞,∞+,∞)]
(∞4)
[(∞+,∞,1+,∞)]
(∞4)
[(∞,1+,∞,∞+)]
(∞4)
[(1+,∞,1+,∞,1+,∞)]
(∞6)

## Related polyhedra and tilings

This tiling is topologically related as a part of sequence of regular polyhedra with Schläfli symbol {n,3}.

Spherical
Polyhedra
Polyhedra Euclidean Hyperbolic tilings

{2,3}

{3,3}

{4,3}

{5,3}

{6,3}

{7,3}

{8,3}
...
(∞,3}
Noncompact hyperbolic uniform tilings in [∞,3] family
Symmetry: [∞,3], (*∞32) [∞,3]+
(∞32)
[1+,∞,3]
(*∞33)
[∞,3+]
(3*∞)

=

=

=
=
or
=
or

=
{∞,3} t{∞,3} r{∞,3} t{3,∞} {3,∞} rr{∞,3} tr{∞,3} sr{∞,3} h{∞,3} h2{∞,3} s{3,∞}
Uniform duals
V∞3 V3.∞.∞ V(3.∞)2 V6.6.∞ V3 V4.3.4.∞ V4.6.∞ V3.3.3.3.∞ V(3.∞)3 V3.3.3.3.3.∞
Noncompact hyperbolic uniform tilings in [∞,∞] family
Symmetry: [∞,∞], (*∞∞2)

=
=

=
=

=
=

=
=

=
=

=

=
{∞,∞} t{∞,∞} r{∞,∞} 2t{∞,∞}=t{∞,∞} 2r{∞,∞}={∞,∞} rr{∞,∞} tr{∞,∞}
Dual tilings
V∞ V∞.∞.∞ V(∞.∞)2 V∞.∞.∞ V∞ V4.∞.4.∞ V4.4.∞
Alternations
[1+,∞,∞]
(*∞∞2)
[∞+,∞]
(∞*∞)
[∞,1+,∞]
(*∞∞∞∞)
[∞,∞+]
(∞*∞)
[∞,∞,1+]
(*∞∞2)
[(∞,∞,2+)]
(2*∞∞)
[∞,∞]+
(2∞∞)
h{∞,∞} s{∞,∞} hr{∞,∞} s{∞,∞} h2{∞,∞} hrr{∞,∞} sr{∞,∞}
Alternation duals
V(∞.∞) V(3.∞)3 V(∞.4)4 V(3.∞)3 V∞ V(4.∞.4)2 V3.3.∞.3.∞
Noncompact hyperbolic uniform tilings in [(∞,∞,∞)] family
Symmetry: [(∞,∞,∞)], (*∞∞∞)
(∞,∞,∞) r(∞,∞,∞) (∞,∞,∞) r(∞,∞,∞) (∞,∞,∞) r(∞,∞,∞) t(∞,∞,∞)
Dual tilings
V∞ V∞.∞.∞.∞ V∞ V∞.∞.∞.∞ V∞ V∞.∞.∞.∞ V∞.∞.∞
Alternations
[(1+,∞,∞,∞)]
(*∞∞∞∞)
[∞+,∞,∞)]
(∞*∞)
[∞,1+,∞,∞)]
(*∞∞∞∞)
[∞,∞+,∞)]
(∞*∞)
[(∞,∞,∞,1+)]
(*∞∞∞∞)
[(∞,∞,∞+)]
(∞*∞)
[∞,∞,∞)]+
(∞∞∞)
h(∞,∞,∞) hr(∞,∞,∞) h(∞,∞,∞) hr(∞,∞,∞) h(∞,∞,∞) hr(∞,∞,∞) s(∞,∞,∞)
Alternation duals
V(∞.∞) V(∞.4)4 V(∞.∞) V(∞.4)4 V(∞.∞) V(∞.4)4 V3.∞.3.∞.3.∞