# Oseen's approximation

In 1910 Carl Wilhelm Oseen proposed what became known as Oseen's approximation, to treat problems of fluid dynamics in which a flow velocity field involves a small disturbance of a constant mean flow, as in a stream of liquid. His work was based on the experiments of G.G. Stokes, who had studied a sphere of radius "$a$" falling in a fluid of viscosity $\mu\,$. Oseen developed a correction term, which included inertial factors, for the flow velocity used in Stokes' calculations, to solve the problem. His approximation lead to an improvement to Stokes' calculations.

## Importance

The method and formulation for analysis of flow at a very low Reynolds number is important. The slow motion of small particles in a fluid is common in bio-engineering. Oseen's drag formulation can be used in connection with flow of fluids under various special conditions, such as: containing particles, sedimentation of particles, centrifugation or ultracentrifugation of suspensions, colloids, and blood through isolation of tumors and antigens.[1] The fluid does not even have to be a liquid, and the particles do not need to be solid. It can be used in a number of applications, such as smog formation and atomization of liquids.

## Bio-engineering application

Blood flow in small vessels, such as capillaries, is characterized by small Reynolds and Womersley numbers. A vessel of diameter of 10 µm with a flow of 1 millimetre/second, viscosity of 0.02 poise for blood, density of 1 g/cm3 and a heart rate of 2 Hz, will have a Reynolds number of 0.005 and a Womersley number of 0.0126. At these small Reynolds and Womersley numbers, the viscous effects of the fluid become predominant. Understanding the movement of these particles is essential for drug delivery and studying metastasis movements of cancers.

## Calculations

Oseen considered the sphere to be stationary and the fluid to be flowing with a flow velocity ($U$) at an infinite distance from the sphere. Inertial terms were neglected in Stokes’ calculations.[1] It is a limiting solution when the Reynolds number tends to zero. When the Reynolds number is small and finite, such as 0.1, correction for the inertial term is needed. Oseen substituted the following flow velocity values into the Navier-Stokes equations.

$u_1 = u + u_1^', \qquad u_2 = u_2', \qquad u_3 = u_3'.$

Inserting these into the Navier-Stokes equations and neglecting the quadratic terms in the primed quantities leads to the derivation of Oseen’s approximation:

$u{\partial u_1'\over\partial x_1} = -{1 \over \rho}{\partial p\over\partial x_1} + \nu\nabla^2 u_i' \qquad \left({i=1,2,3}\right).$

Since the motion is symmetric with respect to $x$ axis and the divergence of the vorticity vector is always zero we get:

$(\nabla^2 - {U \over 2v} {\partial \over \partial x} ) \chi = G(x) = 0$

the function $G(x)$ can be eliminated by adding to a suitable function in $x$, is the vorticity function, and the previous function can be written as:

${U \over v} {\partial u' \over \partial x} = \nabla^2u'$

and by some integration the solution for $\chi$ is:

$e^{-Ux \over 2v} \chi = {{Ce^{-UN_R \over 2v}} \over N_R}$

thus by letting $x$ be the “privileged direction” it produces:

$\varphi = {A_0 \over N_R} + A_1{\partial \over \partial x}{1 \over N_R} + A_2{\partial^2 \over \partial x^2}{1 \over N_R} + \ldots$

then by applying the three boundary conditions we obtain

$C = -{3 \over 2} Ua,\ A_0 = -{3 \over 2}va,\ A_1 = {1 \over 4}Ua^3 \ \text{, etc.}$

the new improved drag coefficient now become:

$C_d = {24 \over N_R} (1 + {3 \over 16} N_R)$

and finally When Stokes' solution was solved on the basis of Oseen's approximation, it showed that the resultant hydrodynamic force (drag) is given by

$F= 6\pi\,\mu\,a u\left(1+{3\over 8} N_R\right),$
where:
• $N_R$ is the Reynolds number based on radius of the sphere
• $F$ is the hydrodynamic force
• $u$ is the flow velocity
• $a$ is the radius of the sphere
• $\mu\,$ is the fluid viscosity

The force from Oseen's equation differs from that of Stokes by a factor of

$1+\left({3\over 8}\right) N_R.$

## Error in Stokes' solution

$\triangledown u' ~ = 0$
$u \triangledown u' ~ = - \triangledown p + \nu \triangledown ^2 u',$

but when the velocity ﬁeld is:

$u_y = u \cos\theta\left({1 + {a^3 \over 2r^3} - {3a \over 2r}}\right)$
$u_z = - u \sin\theta \left({1 - {a^3 \over 4r^3} - {3a \over 4r}}\right).$

In the far ﬁeld ${r\over a}$ >> 1, the viscous stress is dominated by the last term. That is:

$\triangledown^2 u' = O\left({a^3\over r^3}\right).$

The inertia term is dominated by the term:

$u{\partial u'\over\partial z_1} \sim O\left({a^2 \over r^2}\right).$

The error is then given by the ratio:

$u {{\partial u'\over \partial z_1} \over {\nu \triangledown^2 u'}} = O \left({r \over a} \right).$

This becomes unbounded for ${r \over a}$ >> 1, therefore the inertia cannot be ignored in the far ﬁeld. By taking the curl, Stokes equation gives $\triangledown ^2 \zeta\,= 0.$ Since the body is a source of vorticity,$\zeta\,$ would become unbounded logarithmically for large ${r \over a}.$ This is certainly unphysical and is known as Stokes' paradox.

## Modifications to Oseen's approximation

One may question, however, whether the correction term was chosen by chance, because in a frame of reference moving with the sphere, the fluid near the sphere is almost at rest, and in that region inertial force is negligible and Stokes' equation is well justified.[1] Far away from the sphere, the flow velocity approaches u and Oseen's approximation is more accurate.[1] But Oseen's equation was obtained applying the equation for the entire flow field. This question was answered by Proudman and Pearson in 1957,[3] who solved the Navier-Stokes equations and gave an improved Stokes' solution in the neighborhood of the sphere and an improved Oseen’s solution at infinity, and matched the two solutions in a supposed common region of their validity. They obtained:

$F= 6\pi\,\mu\,a U\left( 1 + {3 \over 8} N_R + {9 \over 40} N_R^2 \ln N_R + \mathcal{O}( N_R^2) \right).$

Notes
Sources