PFKL

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Phosphofructokinase, liver
Identifiers
Symbols PFKL ; ATP-PFK; PFK-B; PFK-L
External IDs OMIM171860 MGI97547 HomoloGene55668 ChEMBL: 2191 GeneCards: PFKL Gene
EC number 2.7.1.11
RNA expression pattern
PBB GE PFKL 201102 s at tn.png
PBB GE PFKL 211065 x at tn.png
PBB GE PFKL 214309 s at tn.png
More reference expression data
Orthologs
Species Human Mouse
Entrez 5211 18641
Ensembl ENSG00000141959 ENSMUSG00000020277
UniProt P17858 P12382
RefSeq (mRNA) NM_001002021 NM_008826
RefSeq (protein) NP_001002021 NP_032852
Location (UCSC) Chr 21:
45.72 – 45.75 Mb
Chr 10:
77.99 – 78.01 Mb
PubMed search [1] [2]

6-phosphofructokinase, liver type is an enzyme that in humans is encoded by the PFKL gene.[1] Phosphofructokinase (PFK) is a tetrameric enzyme that catalyzes a key step in glycolysis, namely the conversion of D-fructose 6-phosphate to D-fructose 1,6-bisphosphate. Separate genes encode a muscle subunit (M) and a liver subunit (L). PFK from muscle is a homotetramer of M subunits, PFK from liver is a homotetramer of L-subunits, while PFK from platelets can be composed of any tetrameric combination of M and L subunits. The protein encoded by this gene represents the L subunit. Two transcript variants encoding different isoforms have been found for this gene.[1]

Interactive pathway map[edit]

Click on genes, proteins and metabolites below to link to respective articles. [§ 1]

[[File:
GlycolysisGluconeogenesis_WP534 go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to Entrez go to article go to article go to article go to article go to article go to WikiPathways go to article go to Entrez go to article
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
GlycolysisGluconeogenesis_WP534 go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to Entrez go to article go to article go to article go to article go to article go to WikiPathways go to article go to Entrez go to article
|{{{bSize}}}px|alt=Glycolysis and Gluconeogenesis edit|]]
Glycolysis and Gluconeogenesis edit
  1. ^ The interactive pathway map can be edited at WikiPathways: "GlycolysisGluconeogenesis_WP534". 

Model organisms[edit]

Model organisms have been used in the study of PFKL function. A conditional knockout mouse line, called Pfkltm1a(EUCOMM)Wtsi[6][7] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.[8][9][10]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[4][11] Twenty six tests were carried out on mutant mice and three significant abnormalities were observed.[4] Few homozygous mutant embryos were identified during gestation, and none survived until weaning. The remaining tests were carried out on heterozygous mutant adult mice and a hair follicle degeneration phenotype was observed.[4]

References[edit]

  1. ^ a b "Entrez Gene: PFKL phosphofructokinase, liver". 
  2. ^ "Salmonella infection data for Pfkl". Wellcome Trust Sanger Institute. 
  3. ^ "Citrobacter infection data for Pfkl". Wellcome Trust Sanger Institute. 
  4. ^ a b c d Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x. 
  5. ^ Mouse Resources Portal, Wellcome Trust Sanger Institute.
  6. ^ "International Knockout Mouse Consortium". 
  7. ^ "Mouse Genome Informatics". 
  8. ^ Skarnes, W. C.; Rosen, B.; West, A. P.; Koutsourakis, M.; Bushell, W.; Iyer, V.; Mujica, A. O.; Thomas, M.; Harrow, J.; Cox, T.; Jackson, D.; Severin, J.; Biggs, P.; Fu, J.; Nefedov, M.; De Jong, P. J.; Stewart, A. F.; Bradley, A. (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature 474 (7351): 337–342. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.  edit
  9. ^ Dolgin E (2011). "Mouse library set to be knockout". Nature 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718. 
  10. ^ Collins FS, Rossant J, Wurst W (2007). "A Mouse for All Reasons". Cell 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247. 
  11. ^ van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism.". Genome Biol 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837. PMID 21722353. 

Further reading[edit]