PIPES

From Wikipedia, the free encyclopedia
Jump to: navigation, search
This article is about the biochemical buffer PIPES. For other uses, see Pipe (disambiguation).
PIPES
Chemical structure of PIPES
Names
IUPAC name
1,4-Piperazinediethanesulfonic acid (IUPAC)
Other names
PIPES
Identifiers
5625-37-6 YesY
ChemSpider 72022 N
Jmol-3D images Image
PubChem 6992709
Properties
C8H18N2O6S2
Molar mass 302.37
Appearance White powder
Melting point Decomposes above 300 °C
Boiling point Decomposes
1 g/L (100 °C)
Hazards
MSDS External MSDS
Main hazards Irritant
NFPA 704
Flammability code 0: Will not burn. E.g., water Health code 1: Exposure would cause irritation but only minor residual injury. E.g., turpentine Reactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g., liquid nitrogen Special hazards (white): no codeNFPA 704 four-colored diamond
Except where noted otherwise, data is given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
 N verify (what isYesY/N?)
Infobox references

PIPES is the common name for piperazine-N,N′-bis(2-ethanesulfonic acid), and frequently used buffering agent in biochemistry. It is an ethanesulfonic acid buffer developed by Good et al. in the 1960s.[1]

Applications[edit]

PIPES has pKa (6.76 at 25°C) near the physiological pH which makes it useful in cell culture work. Its effective buffering range is 6.1-7.5 at 25° C. PIPES has been documented minimizing lipid loss when buffering glutaraldehyde histology in plant and animal tissues.[2][3] Fungal zoospore fixation for fluorescence microscopy and electron microscopy were optimized with a combination of glutaraldehyde and formaldehyde in PIPES buffer.[4] It has a negligible capacity to bind divalent ions.

See also[edit]

References[edit]

  1. ^ Good, Norman E.; Winget, G. Douglas; Winter, Wilhelmina; Connolly, Thomas N.; Izawa, Seikichi; Singh, Raizada M. M. (1966). "Hydrogen Ion Buffers for Biological Research". Biochemistry 5 (2): 467–77. doi:10.1021/bi00866a011. PMID 5942950. 
  2. ^ Salema, R. and Brando, I., J. Submicr. Cytol., 9, 79 (1973).
  3. ^ Schiff, R.I. and Gennaro, J.F., Scaning Electron Microsc., 3, 449 (1979).
  4. ^ Hardham, A.R. (1985). "Studies on the cell surface of zoospores and cysts of the fungus Phytophthora cinnamomi: The influence of fixation on patterns of lectin binding". Journal of Histochemistry 33 (2): 110–8. doi:10.1177/33.2.3918095. PMID 3918095.