PKM2

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Pyruvate kinase, muscle
Protein PKM2 PDB 1a49.png
PDB rendering based on 1a49.
Available structures
PDB Ortholog search: PDBe, RCSB
Identifiers
Symbols PKM ; CTHBP; HEL-S-30; OIP3; PK3; PKM2; TCB; THBP1
External IDs OMIM179050 MGI97591 HomoloGene37650 ChEMBL: 1075189 GeneCards: PKM Gene
EC number 2.7.1.40
RNA expression pattern
PBB GE PKM2 201251 at tn.png
More reference expression data
Orthologs
Species Human Mouse
Entrez 5315 18746
Ensembl ENSG00000067225 ENSMUSG00000032294
UniProt P14618 P52480
RefSeq (mRNA) NM_001206796 NM_001253883
RefSeq (protein) NP_001193725 NP_001240812
Location (UCSC) Chr 15:
72.49 – 72.52 Mb
Chr 9:
59.66 – 59.68 Mb
PubMed search [1] [2]

Pyruvate kinase isozymes M1/M2 also known as pyruvate kinase muscle isozyme (PKM), pyruvate kinase type K, cytosolic thyroid hormone-binding protein (CTHBP), thyroid hormone-binding protein 1 (THBP1), or opa-interacting protein 3 (OIP3) is an enzyme[1][2] that in humans is encoded by the PKM2 gene.[3][4]

PKM2 is an isoenzyme of the glycolytic enzyme pyruvate kinase. Depending upon the different metabolic functions of the tissues, different isoenzymes of pyruvate kinase are expressed. The pyruvate kinase isoenzyme type M2 is expressed in some differentiated tissues, such as lung, fat tissue, retina, and pancreatic islets, as well as in all cells with a high rate of nucleic acid synthesis, such as normal proliferating cells, embryonic cells, and especially tumor cells.[5][6][7][8][9][10][11]

Two isozymes are encoded by the PKM gene: M1-PK and M2-PK. The M-gene consists of 12 exons and 11 introns. PKM1 and PKM2 are different splicing products of the M-gene (exon 9 for PKM1 and exon 10 for PKM2) and solely differ in 23 amino acids within a 56-amino acid stretch (aa 378-434) at their carboxy terminus.[12][13] The M1-PK isozyme is expressed in organs that are strongly dependent upon a high rate of energy regeneration, such as muscle and brain.[14][15][16]

The pyruvate kinase reaction[edit]

Pyruvate kinase catalyzes the last step within glycolysis, the dephosphorylation of phosphoenolpyruvate to pyruvate and is responsible for net ATP production within the glycolytic sequence. In contrast to mitochondrial respiration, energy regeneration by pyruvate kinase is independent from oxygen supply and allows survival of the organs under hypoxic conditions often found in solid tumors.[17]

Click on genes, proteins and metabolites below to link to respective articles. [§ 1]

[[File:
GlycolysisGluconeogenesis_WP534 go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to Entrez go to article go to article go to article go to article go to article go to WikiPathways go to article go to Entrez go to article
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
GlycolysisGluconeogenesis_WP534 go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to Entrez go to article go to article go to article go to article go to article go to WikiPathways go to article go to Entrez go to article
|{{{bSize}}}px|alt=Glycolysis and Gluconeogenesis edit|]]
Glycolysis and Gluconeogenesis edit
  1. ^ The interactive pathway map can be edited at WikiPathways: "GlycolysisGluconeogenesis_WP534". 

Cellular localization[edit]

M2-PK is a cytosolic enzyme that is associated with other glycolytic enzymes, i.e., hexokinase, glyceraldehyde 3-P dehydrogenase, phosphoglycerate kinase, phosphoglyceromutase, enolase, and lactate dehydrogenase within a so-called glycolytic enzyme complex.[16][18][19][20]

However, PKM2 contains an inducible nuclear translocation signal in its C-domain. The role of M2-PK within the nucleus is complex, since pro-proliferative but also pro-apoptotic stimuli have been described. On the one hand, nuclear PKM2 was found to participate in the phosphorylation of histone 1 by direct phosphate transfer from PEP to histone 1. On the other hand, nuclear translocation of M2-PK induced by a somatostatin analogue, H2O2, or UV light has been linked with caspase-independent programmed cell death.[21][22][23]

Multi-functional role[edit]

The involvement of this enzyme in a variety of pathways, protein–protein interactions, and nuclear transport suggests its potential to perform multiple nonglycolytic functions with diverse implications, although multidimensional role of this protein is as yet not fully explored.[24]

Bi-functional role within tumors[edit]

M2-PK is expressed in most human tumors[7][10][11] Initially, a switch from PK-M1 to PK-M2 expression during tumorgenesis was discussed.[25] These conclusion however were the result of misinterpreation of western blots that had used PKM1-expressing mouse muscle as sole non-cancer tissue. In clinical cancer samples, solely an up-regulation of PK-M2, but no cancer specificity, could be confirmed.[26]

In contrast to the closely homologous pyruvate kinase isoenzyme type M1, which always occurs in a highly active tetrameric form and which is not allosterically regulated, PKM2 may occur in a tetrameric form but also in a dimeric form. The tetrameric form of M2-PK has a high affinity to its substrate phosphoenolpyruvate (PEP), and is highly active at physiological PEP concentrations. When M2-PK is mainly in the highly active tetrameric form, which is the case in differentiated tissues and most normal proliferating cells, glucose is converted to pyruvate under the production of energy.

The dimeric form of M2-PK is characterized by a low affinity to its substrate PEP and is nearly inactive at physiological PEP concentrations. When M2-PK is mainly in the less active dimeric form, which is the case in tumor cells, all glycolytic intermediates above pyruvate kinase accumulate and are channelled into synthetic processes, which branch off from glycolytic intermediates, such as nucleic acid-, phospholipid-, and amino acid synthesis.[14][15][16] Nucleic acids, phospholipids, and amino acids are important cell building-blocks, which are greatly needed by highly proliferating cells, such as tumor cells.

Due to the key position of pyruvate kinase within glycolysis, the tetramer:dimer ratio of PKM2 determines whether glucose carbons are converted to pyruvate and lactate under the production of energy (tetrameric form) or channelled into synthetic processes (dimeric form).[14][15][16]

In tumor cells, PKM2 is mainly in the dimeric form and has, therefore, been termed Tumor M2-PK. The quantification of Tumor M2-PK in plasma and stool is a tool for early detection of tumors and follow-up studies during therapy. The dimerization of PKM2 in tumor cells is induced by direct interaction of PKM2 with different oncoproteins (pp60v-src, HPV-16 E7, and A-Raf).[18][19][27][28][29] The physiological function of the interaction between PKM2 and HERC1 as well as between PKM2 and PKCdelta is unknown).[30][31]

However, the tetramer:dimer ratio of PKM2 is not stationary value. High levels of the glycolytic intermediate fructose 1,6-P2 induce the re-association of the dimeric form of M2-PK to the tetrameric form. As a consequence, glucose is converted to pyruvate and lactate with the production of energy until fructtose 1,6-P2 levels drop below a critical value to allow the dissociation the dimeric form. This regulation is termed metabolic budget system.[15][16][32] Another activator of M2-PK is the amino acid serine.[15] The thyroid hormone 3,3´,5-triiodi-L-tyhronine (T3) binds to the monomeric form of M2-PK and prevents its association to the tetrameric form.[33]

In tumor cells, the increased rate of lactate production in the presence of oxygen is termed the Warburg effect. Genetic manipulation of cancer cells so that they produce adult PKM1 instead of PKM2 reverses the Warburg effect and reduces the growth rate of these modified cancer cells.[25] Accordingly, cotransfection of NIH 3T3 cells with gag-A-Raf and a kinase dead mutant of M2-PK reduced colony whereas cotransfection with gag-A-Raf and wild type M2-PK led to a doubling of focus formation.[34]

Natural Mutations and Carcinogenesis[edit]

For the first time pyruvate kinase M2 enzyme was reported with two missense mutations, H391Y and K422R, found in cells from Bloom syndrome patients, prone to develop cancer. Results show that despite the presence of mutations in the inter-subunit contact domain, the K422R and H391Y mutant proteins maintained their homotetrameric structure, similar to the wild-type protein, but showed a loss of activity of 75 and 20%, respectively. Interestingly, H391Y showed a 6-fold increase in affinity for its substrate phosphoenolpyruvate and behaved like a non-allosteric protein with compromised cooperative binding. However, the affinity for phosphoenolpyruvate was lost significantly in K422R. Unlike K422R, H391Y showed enhanced thermal stability, stability over a range of pH values, a lesser effect of the allosteric inhibitor Phe, and resistance toward structural alteration upon binding of the activator (fructose 1,6-bisphosphate) and inhibitor (Phe). Both mutants showed a slight shift in the pH optimum from 7.4 to 7.0.[35] The co-expression of homotetrameric wild type and mutant PKM2 in the cellular milieu resulting in the interaction between the two at the monomer level was substantiated further by in vitro experiments. The cross-monomer interaction significantly altered the oligomeric state of PKM2 by favoring dimerisation and heterotetramerization. In silico study provided an added support in showing that hetero-oligomerization was energetically favorable. The hetero-oligomeric populations of PKM2 showed altered activity and affinity, and their expression resulted in an increased growth rate of Escherichia coli as well as mammalian cells, along with an increased rate of polyploidy. These features are known to be essential to tumor progression.[36]

Further, Cells stably expressing exogenous wild- or mutant-PKM2 (K422R or H391Y) or co-expressing both wild and mutant (PKM2-K422R or PKM2-H391Y), were assessed for cancer metabolism and tumorigenic potential. Interestingly, cells co-expressing PKM2 and mutant (K422R or H391Y) showed significantly aggressive cancer metabolism, compared to cells expressing either wild or mutant PKM2 independently. A similar trend was observed for oxidative endurance, tumorigenic potential, cellular proliferation and tumor growth. These observations signify the dominant negative nature of these mutations. Remarkably, PKM2-H391Y co-expressed cells showed a maximal effect on all the studied parameters. Such a dominant negative impaired function of PKM2 in tumor development is not known; also evidencing for the first time the possible predisposition of BS patients with impaired PKM2 activity to cancer, and the importance of studying genetic variations in PKM2 in future to understand their relevance in cancer in general. [37]


Regulatory Circuits and Potential for Therapeutic Intervention: A Review[edit]

Cancer cells are characterized by a reprogramming of energy metabolism. Over the last decade, understanding of the metabolic changes that occur in cancer has increased dramatically, and there is great interest in targeting metabolism for cancer therapy. Pyruvate kinase isoenzyme type M2 (abbreviations: PKM2, M2-PK) plays a key role in modulating glucose metabolism to support cell proliferation. PKM2, like other PK isoforms, catalyzes the last energy-generating step in glycolysis, but is unique in its capacity to be regulated. PKM2 is regulated on several cellular levels, including gene expression, alternative splicing and post-translational modification. In addition, PKM2 is regulated by key metabolic intermediates and interacts with more than twenty different proteins.Hence, this isoenzyme is an important regulator of glycolysis, and additionally functions in other novel roles that have recently emerged. Recent evidence indicates that intervening with the complex regulatory network of PKM2 has severe consequences on tumor cell proliferation, indicating the potential of this enzyme as a target for tumor therapy.[38]


Role in bacterial pathogenesis[edit]

With the yeast two-hybrid system, gonococcal Opa proteins were found to interact with M2-PK. The results suggest that direct molecular interaction with the host metabolic enzyme PKM2 is required for the acquisition of pyruvate and for gonococcal growth and survival.[39]

See also[edit]

References[edit]

  1. ^ Kitagawa S, Obata T, Hasumura S, Pastan I, Cheng SY (March 1987). "A cellular 3,3',5-triiodo-L-thyronine binding protein from a human carcinoma cell line. Purification and characterization". J. Biol. Chem. 262 (8): 3903–8. PMID 3818670. 
  2. ^ Tsutsumi H, Tani K, Fujii H, Miwa S (January 1988). "Expression of L- and M-type pyruvate kinase in human tissues". Genomics 2 (1): 86–9. doi:10.1016/0888-7543(88)90112-7. PMID 2838416. 
  3. ^ Tani K, Yoshida MC, Satoh H, Mitamura K, Noguchi T, Tanaka T, Fujii H, Miwa S (December 1988). "Human M2-type pyruvate kinase: cDNA cloning, chromosomal assignment and expression in hepatoma". Gene 73 (2): 509–16. doi:10.1016/0378-1119(88)90515-X. PMID 2854097. 
  4. ^ Popescu NC, Cheng SY (November 1990). "Chromosomal localization of the gene for a human cytosolic thyroid hormone binding protein homologous to the subunit of pyruvate kinase, subtype M2". Somat. Cell Mol. Genet. 16 (6): 593–8. doi:10.1007/BF01233100. PMID 2267632. 
  5. ^ Corcoran E, Phelan JJ, Fottrell PF (1976). "Purification and properties of pyruvate kinase from human lung". Biochim. Biophys. Acta 446 (1): 96–104. doi:10.1016/0005-2795(76)90101-x. PMID 974119. 
  6. ^ Tolle SW, Dyson RD, Newburgh RW, Cardenas JM (1976). "Pyruvate kinase isozymes in neurons, glia, neuroblastoma and glioblastoma". J. Neurochem. 27 (6): 1355–1360. doi:10.1111/j.1471-4159.1976.tb02615.x. PMID 1003209. 
  7. ^ a b Reinacher M, Eigenbrodt E (1981). "Immunohistological demonstration of the same type of pyruvate kinase isoenzyme (M2-PK) in tumors of chicken and rat". Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 37 (1): 79–88. doi:10.1007/BF02892557. PMID 6116351. 
  8. ^ Schering B, Eigenbrodt E, Linder D, Schoner W. (1982). "Purification and properties of pyruvate kinase type M2 from rat lung". Biochim. Biophys. Acta 717 (2): 337–347. doi:10.1016/0304-4165(82)90188-X. PMID 7115773. 
  9. ^ Mac Donald MJ, Chang CM (1985). "Pancreatic islets contain the M2 isoenzyme of pyruvate kinase". Mol. Cell Biochem. 68 (2): 115–120. doi:10.1007/bf00219375. PMID 3908905. 
  10. ^ a b Brinck U, Eigenbrodt E, Oehmke M, Mazurek S, Fischer G (1994). "L- and M2-pyruvate kinase expression in renal cell carcinomas and their metastases". Virchows Arch. 424 (2): 177–185. doi:10.1007/BF00193498. PMID 8180780. 
  11. ^ a b Steinberg P, Klingelhöffer A, Schäfer A, Wüst G, Weisse G, Oesch F, Eigenbrodt E (1999). "Expression of pyruvate kinase M2 in preneoplastic hepatic foci of N-nitrosomorpholine-treated rats". Virchows Arch. 434 (3): 213–220. doi:10.1007/s004280050330. PMID 10190300. 
  12. ^ Noguchi T, Inoue H, Tanaka T (1986). "The M1 and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative splicing". J. Biol. Chem. 261 (29): 13807–13812. PMID 3020052. 
  13. ^ Dombrauckas JD, Santarsiero BD, Mesecar AD (2005). "Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis". Biochemistry 44 (27): 9417–29. doi:10.1021/bi0474923. PMID 15996096. 
  14. ^ a b c Eigenbrodt E, Glossmann H (1980). "Glycolysis – one of the keys to cancer". Trends Pharmacol. Sci. 1 (2): 240–245. doi:10.1016/0165-6147(80)90009-7. 
  15. ^ a b c d e Eigenbrodt E, Reinacher M, Scheefers-Borchel U, Scheefers H, Friis R (1992). "Double role for pyruvate kinase type M2 in the expansion of phosphometabolite pools found in tumor cells". Crit. Rev. Oncog. 3 (1–2): 91–115. PMID 1532331. 
  16. ^ a b c d e Mazurek S, Boschek CB, Hugo F, Eigenbrodt E (2005). "Pyruvate kinase type M2 and its role in tumor growth and spreading". Semin. Cancer Biol. 15 (4): 300–8. doi:10.1016/j.semcancer.2005.04.009. PMID 15908230. 
  17. ^ Vaupel P, Harrison L (2004). "Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response". Oncologist. 9 Suppl 5: 4–9. doi:10.1634/theoncologist.9-90005-4. PMID 15591417. 
  18. ^ a b Zwerschke W, Mazurek S, Massimi P, Banks L, Eigenbrodt E, Jansen-Dürr P (1999). "Modulation of type M2 pyruvate kinase activity by the human papillomavirus type 16 E7 oncoprotein". Proc. Natl. Acad. Sci. U.S.A. 96 (4): 1291–6. doi:10.1073/pnas.96.4.1291. PMC 15456. PMID 9990017. 
  19. ^ a b Mazurek S, Zwerschke W, Jansen-Dürr P, Eigenbrodt E (2001). "Metabolic cooperation between different oncogenes during cell transformation: interaction between activated ras and HPV-16 E7". Oncogene 20 (47): 6891–8. doi:10.1038/sj.onc.1204792. PMID 11687968. 
  20. ^ Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC (2008). "Pyruvate kinase M2 is a phosphotyrosine-binding protein". Nature 452 (7184): 181–6. doi:10.1038/nature06667. PMID 18337815. 
  21. ^ Ignacak J, Stachurska MB (2003). "The dual activity of pyruvate kinase type M2 from chromatin extracts of neoplastic cells". Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 134 (3): 425–33. doi:10.1016/S1096-4959(02)00283-X. PMID 12628374. 
  22. ^ Hoshino A, Hirst JA, Fujii H (2007). "Regulation of cell proliferation by interleukin-3-induced nuclear translocation of pyruvate kinase". J. Biol. Chem. 282 (24): 17706–11. doi:10.1074/jbc.M700094200. PMID 17446165. 
  23. ^ Steták A, Veress R, Ovádi J, Csermely P, Kéri G, Ullrich A (2007). "Nuclear translocation of the tumor marker pyruvate kinase M2 induces programmed cell death". Cancer Res. 67 (4): 1602–8. doi:10.1158/0008-5472.CAN-06-2870. PMID 17308100. 
  24. ^ Gupta V, Bamezai RN (Sep 2010). "Human pyruvate kinase M2: A multifunctional protein". Protein Sci. 19 (11): 2031–44. doi:10.1002/pro.505. PMC 3005776. PMID 20857498. 
  25. ^ a b Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC (2008). "The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth". Nature 452 (7184): 230–3. doi:10.1038/nature06734. PMID 18337823. 
  26. ^ Bluemlein K, Grüning NM, Feichtinger RG, Lehrach H, Kofler B, Ralser M (May 2011). "No evidence for a shift in pyruvate kinase PKM1 to PKM2 expression during tumorigenesis". Oncotarget 2 (5): 393–400. PMC 3248187. PMID 21789790. 
  27. ^ Oude Weernink PA, Rijksen G, Staal GEJ (1991). "Phosphorylation of pyruvate kinase type and glycolytic metabolism in three human glioma cell lines". Tumour Biol. 12 (6): 339–352. doi:10.1159/000217735. PMID 1798909. 
  28. ^ Eigenbrodt E, Mazurek S, Friis RR (1998). Double role of pyruvate kinase type M2 in the regulation of phosphometabolite pools. In: Bannasch P, Kanduc D, Papa S, Tager JM (eds). Cell growth and Oncogenesis (Basel/Switzerland: Birkhäuser Verlag). pp. 15–30. doi:10.1007/978-3-0348-8950-6_2. ISBN 3-7643-5727-4. 
  29. ^ Mazurek S, Drexler HC, Troppmair J, Eigenbrodt E, Rapp UR (2007). "Regulation of pyruvate kinase type M2 by A-Raf: a possible glycolytic stop or go metabolism". Anticancer Res. 27 (6B): 3963–3971. PMID 18225557. 
  30. ^ Garcia-Gonzalo FR, Cruz C, Muñoz P, Mazurek S, Eigenbrodt E, Ventura F, Bartrons R, Rosa JL (2003). "Interaction between HERC1 and M2-type pyruvate kinase". FEBS Lett. 539 (1–3): 78–84. doi:10.1016/S0014-5793(03)00205-9. PMID 12650930. 
  31. ^ Siwko S, Mochly-Rosen D (2007). "Use of a Novel Method to Find Substrates of Protein Kinase C Delta Identifies M2 Pyruvate Kinase". Int. J. Biochem. Cell Biol. 39 (5): 978–87. doi:10.1016/j.biocel.2007.01.018. PMC 1931518. PMID 17337233. 
  32. ^ Ashizawa K, Willingham MC, Liang CM, Cheng SY (1991). "In vivo regulation of monomer-tetramer conversion of pyruvate kinase subtype M2 by glucose is mediated via fructose 1,6-P2". J. Biol. Chem. 266 (25): 16842–16846. PMID 1885610. 
  33. ^ Kato H, Fukuda T, Parkinson C, McPhie P, Cheng SY (1989). "Cytosolic thyroid hormone-binding protein is a monomer of pyruvate kinase". Proc. Natl. Acad. Sci. USA 86 (20): 7861–7865. doi:10.1073/pnas.86.20.7861. PMC 298171. PMID 2813362. 
  34. ^ Le Mellay V, Houben R, Troppmair J, Hagemann C, Mazurek S, Frey U, Beigel J, Weber C, Benz R, Eigenbrodt E, Rapp UR (2002). "Regulation of glycolysis by Raf protein serine/threonine kinases". Adv. Enzyme Regul. 42: 317–32. doi:10.1016/S0065-2571(01)00036-X. PMID 12123723. 
  35. ^ Akhtar K, Gupta V, Koul A, Alam N, Bhat R, Bamezai RN (May 2009). "Differential Behavior of Missense Mutations in the Intersubunit Contact Domain of the Human Pyruvate Kinase M2 Isozyme". J. Biol. Chem. 284 (18): 11971–81. doi:10.1074/jbc.M808761200. PMC 2673266. PMID 19265196. 
  36. ^ Gupta V, Kalaiarasan P, Faheem M, Singh N, Iqbal MA, Bamezai RN (May 2010). "Dominant Negative Mutations Affect Oligomerization of Human Pyruvate Kinase M2 Isozyme and Promote Cellular Growth and Polyploidy". J. Biol. Chem. 285 (22): 16864–73. doi:10.1074/jbc.M109.065029. PMC 2878009. PMID 20304929. 
  37. ^ Iqbal MA1, Siddiqui FA, Chaman N, Gupta V, Kumar B, Gopinath P, Bamezai RNJ Biol Chem. 2014, Missense mutations in pyruvate kinase M2 promote cancer metabolism, oxidative endurance, anchorage independence and tumor growth in a dominant negative manner. . PMID 24492614
  38. ^ Gupta V, Wellen KE, Mazurek S, Bamezai RN.Pyruvate Kinase M2: Regulatory Circuits and Potential for Therapeutic Intervention. Curr Pharm Des. 2013 Jun 25 PMID 23859618
  39. ^ Williams JM, Chen GC, Zhu L, Rest RF (1998). "Using the yeast two-hybrid system to identify human epithelial cell proteins that bind gonococcal Opa proteins: intracellular gonococci bind pyruvate kinase via their Opa proteins and require host pyruvate for growth". Mol. Microbiol. 27 (1): 171–86. doi:10.1046/j.1365-2958.1998.00670.x. PMID 9466265. 

External links[edit]