PSMC5

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Proteasome (prosome, macropain) 26S subunit, ATPase, 5
Protein PSMC5 PDB 2KRK.png
Rendering based on PDB 2KRK.
Available structures
PDB Ortholog search: PDBe, RCSB
Identifiers
Symbols PSMC5 ; S8; SUG-1; SUG1; TBP10; TRIP1; p45; p45/SUG
External IDs OMIM601681 MGI105047 HomoloGene2098 GeneCards: PSMC5 Gene
RNA expression pattern
PBB GE PSMC5 209503 s at tn.png
More reference expression data
Orthologs
Species Human Mouse
Entrez 5705 19184
Ensembl ENSG00000087191 ENSMUSG00000020708
UniProt P62195 P62196
RefSeq (mRNA) NM_001199163 NM_008950
RefSeq (protein) NP_001186092 NP_032976
Location (UCSC) Chr 17:
61.9 – 61.91 Mb
Chr 11:
106.26 – 106.26 Mb
PubMed search [1] [2]

26S protease regulatory subunit 8 is an enzyme that in humans is encoded by the PSMC5 gene.[1][2][3]

The 26S proteasome is a multicatalytic proteinase complex with a highly ordered structure composed of 2 complexes, a 20S core and a 19S regulator. The 20S core is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta subunits. The 19S regulator is composed of a base, which contains 6 ATPase subunits and 2 non-ATPase subunits, and a lid, which contains up to 10 non-ATPase subunits. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. An essential function of a modified proteasome, the immunoproteasome, is the processing of class I MHC peptides. This gene encodes one of the ATPase subunits, a member of the triple-A family of ATPases which have a chaperone-like activity. In addition to participation in proteasome functions, this subunit may participate in transcriptional regulation since it has been shown to interact with the thyroid hormone receptor and retinoid X receptor-alpha.[3]

Interactions[edit]

PSMC5 has been shown to interact with XPB,[4] Sp1 transcription factor,[5][6] PSMC3[7] and PSMC4.[8][9]

References[edit]

  1. ^ Tanahashi N, Suzuki M, Fujiwara T, Takahashi E, Shimbara N, Chung CH, Tanaka K (March 1998). "Chromosomal localization and immunological analysis of a family of human 26S proteasomal ATPases". Biochem Biophys Res Commun 243 (1): 229–32. doi:10.1006/bbrc.1997.7892. PMID 9473509. 
  2. ^ Hoyle J, Tan KH, Fisher EM (March 1997). "Localization of genes encoding two human one-domain members of the AAA family: PSMC5 (the thyroid hormone receptor-interacting protein, TRIP1) and PSMC3 (the Tat-binding protein, TBP1)". Hum Genet 99 (2): 285–8. doi:10.1007/s004390050356. PMID 9048938. 
  3. ^ a b "Entrez Gene: PSMC5 proteasome (prosome, macropain) 26S subunit, ATPase, 5". 
  4. ^ Weeda, G; Rossignol M, Fraser R A, Winkler G S, Vermeulen W, van 't Veer L J, Ma L, Hoeijmakers J H, Egly J M (June 1997). "The XPB subunit of repair/transcription factor TFIIH directly interacts with SUG1, a subunit of the 26S proteasome and putative transcription factor". Nucleic Acids Res. (ENGLAND) 25 (12): 2274–83. doi:10.1093/nar/25.12.2274. ISSN 0305-1048. PMC 146752. PMID 9173976. 
  5. ^ Su, K; Yang X; Roos M D; Paterson A J; Kudlow J E (June 2000). "Human Sug1/p45 is involved in the proteasome-dependent degradation of Sp1". Biochem. J. 348 (ENGLAND) Pt 2: 281–9. doi:10.1042/0264-6021:3480281. ISSN 0264-6021. PMC 1221064. PMID 10816420. 
  6. ^ Wang, Yi-Ting; Chuang Jian-Ying; Shen Meng-Ru; Yang Wen-Bin; Chang Wen-Chang; Hung Jan-Jong (July 2008). "Sumoylation of specificity protein 1 augments its degradation by changing the localization and increasing the specificity protein 1 proteolytic process". J. Mol. Biol. (England) 380 (5): 869–85. doi:10.1016/j.jmb.2008.05.043. PMID 18572193. 
  7. ^ Ishizuka, T; Satoh T; Monden T; Shibusawa N; Hashida T; Yamada M; Mori M (August 2001). "Human immunodeficiency virus type 1 Tat binding protein-1 is a transcriptional coactivator specific for TR". Mol. Endocrinol. (United States) 15 (8): 1329–43. doi:10.1210/me.15.8.1329. ISSN 0888-8809. PMID 11463857. 
  8. ^ Rual, Jean-François; Venkatesan Kavitha, Hao Tong, Hirozane-Kishikawa Tomoko, Dricot Amélie, Li Ning, Berriz Gabriel F, Gibbons Francis D, Dreze Matija, Ayivi-Guedehoussou Nono, Klitgord Niels, Simon Christophe, Boxem Mike, Milstein Stuart, Rosenberg Jennifer, Goldberg Debra S, Zhang Lan V, Wong Sharyl L, Franklin Giovanni, Li Siming, Albala Joanna S, Lim Janghoo, Fraughton Carlene, Llamosas Estelle, Cevik Sebiha, Bex Camille, Lamesch Philippe, Sikorski Robert S, Vandenhaute Jean, Zoghbi Huda Y, Smolyar Alex, Bosak Stephanie, Sequerra Reynaldo, Doucette-Stamm Lynn, Cusick Michael E, Hill David E, Roth Frederick P, Vidal Marc (October 2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature (England) 437 (7062): 1173–8. doi:10.1038/nature04209. PMID 16189514. 
  9. ^ Ewing, Rob M; Chu Peter, Elisma Fred, Li Hongyan, Taylor Paul, Climie Shane, McBroom-Cerajewski Linda, Robinson Mark D, O'Connor Liam, Li Michael, Taylor Rod, Dharsee Moyez, Ho Yuen, Heilbut Adrian, Moore Lynda, Zhang Shudong, Ornatsky Olga, Bukhman Yury V, Ethier Martin, Sheng Yinglun, Vasilescu Julian, Abu-Farha Mohamed, Lambert Jean-Philippe, Duewel Henry S, Stewart Ian I, Kuehl Bonnie, Hogue Kelly, Colwill Karen, Gladwish Katharine, Muskat Brenda, Kinach Robert, Adams Sally-Lin, Moran Michael F, Morin Gregg B, Topaloglou Thodoros, Figeys Daniel (2007). "Large-scale mapping of human protein-protein interactions by mass spectrometry". Mol. Syst. Biol. (England) 3 (1): 89. doi:10.1038/msb4100134. PMC 1847948. PMID 17353931. 

Further reading[edit]