Paraboloidal coordinates

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Paraboloidal coordinates are a three-dimensional orthogonal coordinate system (\lambda, \mu, \nu) that generalizes the two-dimensional parabolic coordinate system. Similar to the related ellipsoidal coordinates, the paraboloidal coordinate system has orthogonal quadratic coordinate surfaces that are not produced by rotating or projecting any two-dimensional orthogonal coordinate system.

Coordinate surfaces of the three-dimensional paraboloidal coordinates.

Basic formulae[edit]

The Cartesian coordinates (x, y, z) can be produced from the ellipsoidal coordinates ( \lambda, \mu, \nu ) by the equations

x^{2} = \frac{\left( A - \lambda \right) \left( A - \mu \right) \left( A - \nu \right)}{B - A}

y^{2} = \frac{\left( B - \lambda \right) \left( B - \mu \right) \left( B - \nu \right)}{A - B}

z = 
\frac{1}{2} \left( A + B - \lambda - \mu -\nu \right)

where the following limits apply to the coordinates

\lambda < B < \mu < A < \nu

Consequently, surfaces of constant \lambda are elliptic paraboloids

\frac{x^{2}}{\lambda - A} +  \frac{y^{2}}{\lambda - B}  = 2z + \lambda

and surfaces of constant \nu are likewise

\frac{x^{2}}{\nu - A} +  \frac{y^{2}}{\nu - B}  = 2z + \nu

whereas surfaces of constant \mu are hyperbolic paraboloids

\frac{x^{2}}{\mu - A} +  \frac{y^{2}}{\mu - B} = 2z + \mu

Scale factors[edit]

The scale factors for the paraboloidal coordinates (\lambda, \mu, \nu ) are

h_{\lambda} = \frac{1}{2} \sqrt{\frac{\left( \mu - \lambda \right) \left( \nu - \lambda \right)}{ \left( A - \lambda \right) \left( B - \lambda \right)}}

h_{\mu} = \frac{1}{2} \sqrt{\frac{\left( \nu - \mu \right) \left( \lambda - \mu \right)}{ \left( A - \mu \right) \left( B - \mu \right)}}

h_{\nu} = \frac{1}{2} \sqrt{\frac{\left( \lambda - \nu \right) \left( \mu - \nu \right)}{ \left( A - \nu \right) \left( B - \nu \right)}}

Hence, the infinitesimal volume element equals

dV = \frac{\left( \mu - \lambda \right) \left( \nu - \lambda \right) \left( \nu - \mu\right)}{8\sqrt{\left( A - \lambda \right) \left( B - \lambda \right) \left( A - \mu \right) \left( \mu - B \right) \left( \nu - A \right) \left( \nu  - B \right) }} \  d\lambda d\mu d\nu

Differential operators such as \nabla \cdot \mathbf{F} and \nabla \times \mathbf{F} can be expressed in the coordinates (\lambda, \mu, \nu) by substituting the scale factors into the general formulae found in orthogonal coordinates.



  • Morse PM, Feshbach H (1953). Methods of Theoretical Physics, Part I. New York: McGraw-Hill. p. 664. ISBN 0-07-043316-X. LCCN 52011515. 
  • Margenau H, Murphy GM (1956). The Mathematics of Physics and Chemistry. New York: D. van Nostrand. pp. 184–185. LCCN 55010911. 
  • Korn GA, Korn TM (1961). Mathematical Handbook for Scientists and Engineers. New York: McGraw-Hill. p. 180. LCCN 59014456. ASIN B0000CKZX7. 
  • Arfken G (1970). Mathematical Methods for Physicists (2nd ed.). Orlando, FL: Academic Press. pp. 119–120. 
  • Sauer R, Szabó I (1967). Mathematische Hilfsmittel des Ingenieurs. New York: Springer Verlag. p. 98. LCCN 67025285. 
  • Zwillinger D (1992). Handbook of Integration. Boston, MA: Jones and Bartlett. p. 114. ISBN 0-86720-293-9.  Same as Morse & Feshbach (1953), substituting uk for ξk.
  • Moon P, Spencer DE (1988). "Paraboloidal Coordinates (μ, ν, λ)". Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions (corrected 2nd ed., 3rd print ed.). New York: Springer-Verlag. pp. 44–48 (Table 1.11). ISBN 978-0-387-18430-2. 

External links[edit]