# Paraboloidal coordinates

Paraboloidal coordinates are a three-dimensional orthogonal coordinate system $(\lambda, \mu, \nu)$ that generalizes the two-dimensional parabolic coordinate system. Similar to the related ellipsoidal coordinates, the paraboloidal coordinate system has orthogonal quadratic coordinate surfaces that are not produced by rotating or projecting any two-dimensional orthogonal coordinate system.

Coordinate surfaces of the three-dimensional paraboloidal coordinates.

## Basic formulae

The Cartesian coordinates $(x, y, z)$ can be produced from the ellipsoidal coordinates $( \lambda, \mu, \nu )$ by the equations

$x^{2} = \frac{\left( A - \lambda \right) \left( A - \mu \right) \left( A - \nu \right)}{B - A}$
$y^{2} = \frac{\left( B - \lambda \right) \left( B - \mu \right) \left( B - \nu \right)}{A - B}$
$z = \frac{1}{2} \left( A + B - \lambda - \mu -\nu \right)$

where the following limits apply to the coordinates

$\lambda < B < \mu < A < \nu$

Consequently, surfaces of constant $\lambda$ are elliptic paraboloids

$\frac{x^{2}}{\lambda - A} + \frac{y^{2}}{\lambda - B} = 2z + \lambda$

and surfaces of constant $\nu$ are likewise

$\frac{x^{2}}{\nu - A} + \frac{y^{2}}{\nu - B} = 2z + \nu$

whereas surfaces of constant $\mu$ are hyperbolic paraboloids

$\frac{x^{2}}{\mu - A} + \frac{y^{2}}{\mu - B} = 2z + \mu$

## Scale factors

The scale factors for the paraboloidal coordinates $(\lambda, \mu, \nu )$ are

$h_{\lambda} = \frac{1}{2} \sqrt{\frac{\left( \mu - \lambda \right) \left( \nu - \lambda \right)}{ \left( A - \lambda \right) \left( B - \lambda \right)}}$
$h_{\mu} = \frac{1}{2} \sqrt{\frac{\left( \nu - \mu \right) \left( \lambda - \mu \right)}{ \left( A - \mu \right) \left( B - \mu \right)}}$
$h_{\nu} = \frac{1}{2} \sqrt{\frac{\left( \lambda - \nu \right) \left( \mu - \nu \right)}{ \left( A - \nu \right) \left( B - \nu \right)}}$

Hence, the infinitesimal volume element equals

$dV = \frac{\left( \mu - \lambda \right) \left( \nu - \lambda \right) \left( \nu - \mu\right)}{8\sqrt{\left( A - \lambda \right) \left( B - \lambda \right) \left( A - \mu \right) \left( \mu - B \right) \left( \nu - A \right) \left( \nu - B \right) }} \ d\lambda d\mu d\nu$

Differential operators such as $\nabla \cdot \mathbf{F}$ and $\nabla \times \mathbf{F}$ can be expressed in the coordinates $(\lambda, \mu, \nu)$ by substituting the scale factors into the general formulae found in orthogonal coordinates.

## Bibliography

• Morse PM, Feshbach H (1953). Methods of Theoretical Physics, Part I. New York: McGraw-Hill. p. 664. ISBN 0-07-043316-X. LCCN 52011515.
• Margenau H, Murphy GM (1956). The Mathematics of Physics and Chemistry. New York: D. van Nostrand. pp. 184–185. LCCN 5510911 Check |lccn= value (help).
• Korn GA, Korn TM (1961). Mathematical Handbook for Scientists and Engineers. New York: McGraw-Hill. p. 180. LCCN 5914456 Check |lccn= value (help). ASIN B0000CKZX7.
• Arfken G (1970). Mathematical Methods for Physicists (2nd ed.). Orlando, FL: Academic Press. pp. 119–120.
• Sauer R, Szabó I (1967). Mathematische Hilfsmittel des Ingenieurs. New York: Springer Verlag. p. 98. LCCN 6725285 Check |lccn= value (help).
• Zwillinger D (1992). Handbook of Integration. Boston, MA: Jones and Bartlett. p. 114. ISBN 0-86720-293-9. Same as Morse & Feshbach (1953), substituting uk for ξk.
• Moon P, Spencer DE (1988). "Paraboloidal Coordinates (μ, ν, λ)". Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions (corrected 2nd ed., 3rd print ed.). New York: Springer-Verlag. pp. 44–48 (Table 1.11). ISBN 978-0-387-18430-2.