Paraves

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Paravians
Temporal range: Late JurassicHolocene, 160–0Ma
Microraptor gui holotype.png
Fossil specimen of a Microraptor
Red-crested Turaco RWD.jpg
Red-crested Turaco in San Diego Zoo
Scientific classification e
Kingdom: Animalia
Phylum: Chordata
Clade: Dinosauria
Clade: Theropoda
Clade: Pennaraptora
Clade: Paraves
Sereno, 1997
Subgroups

Paraves is a branch-based clade defined to include all dinosaurs which are more closely related to birds than to oviraptorosaurs. Paravians comprises two major sub-groups: Avialae, including Jeholornis and flying birds, and the Deinonychosauria, which includes the dromaeosaurids and troodontids, which may or may not form a natural group. Eumaniraptora has generally been considered to be a synonym.

Both gigantism and miniaturization occurred within Coelurosauria, but the most extreme examples of miniaturization and progenesis, accelerated sexual maturation which emerge during a phase that would be considered juvenile in the predecessors, at which both growth and further anatomical development slows down or cease, is found in Paraves.[1] Turner et al. (2007) suggested that extreme miniaturization was ancestral for the clade, whose common ancestor has been estimated to have been around 65 centimeters long and 600-700 grams in mass. In Eumaniraptora, Dromaeosauridae and Troodontidae went later through four independent events of gigantism, three times in dromaeosaurids and once in troodontids, while the body mass continued to decrease in many forms within Avialae.[2] Fossils shows that all the earliest members of Paraves found to date started out as small, but within Troodontidae and Dromaeosauridae, they gradually increased in size during the Cretaceous period.[2]

The ancestral paravian is a hypothetical animal; the first common ancestor of birds, dromaeosaurids, and troodontids which was not also ancestral to oviraptorosaurs. Little can be said with certainty about this animal. But the work of Xu et al. (2003), (2005) and Hu et al. (2009) provide examples of basal and early paravians with four wings,[3][4][5] adapted to an arboreal lifestyle who would only lose their hindwings when some adapted to a life on the ground and when birds evolved powered flight.[6] Newer research also indicates that gliding, flapping and parachuting was another ancestral trait of Paraves, while true powered flight only evolved in birds.[7]

Description[edit]

Like other theropods, early paravians are bipedal; that is, they walk on their two hind legs. However, whereas most theropods walked with three toes contacting the ground, fossilized footprint tracks confirm that many basal paravians, including dromaeosaurids, troodontids, and some early avialans, held the second toe off the ground in a hyperextended position, with only the third and fourth toes bearing the weight of the animal. This is called functional didactyly.[8] The enlarged second toe bore an unusually large, curved sickle-shaped claw (held off the ground or 'retracted' when walking). This claw was especially large and flattened from side to side in the large-bodied predatory eudromaeosaurs.[9] In these early species, the first toe (hallux) was usually small and angled inward toward the center of the body, but only became fully reversed in more specialized members of the bird lineage.[10] One species, Balaur bondoc, possessed a first toe which was highly modified in parallel with the second. Both the first and second toes on each foot of B. bondoc were held retracted and bore enlarged, sickle-shaped claws.[11]

An increasingly asymmetric carpal joint, a trend that can be traced back to primitive coelurosaurs, allowed the forelimbs to elongate and an elaboration of their plumage, traits that made the evolution of wings possible.[12]

The teeth of basal paravians were curved and serrated, but not blade-like except in some specialized species such as Dromaeosaurus albertensis. The serrations on the front edge of dromaeosaurid and troodontid teeth were very small and fine, while the back edge had serrations which were very large and hooked.[10] Paravians generally have long, winged forelimbs, though these have become smaller in flightless birds and some extinct lineages such as the troodontids. The wings usually bore three large, flexible, clawed fingers in early forms.[10] The fingers became fused and stiffened and the claws highly reduced or lost in some advanced lineages.

Most dromaeosaurids seem to have been predatory, though some smaller species especially among the troodontids and avialans are known to have been at least omnivorous, and its possible that an omnivorous diet was the ancestral state for this group, with more strict carnivory evolving in some lineages.[13][10]

Claw function[edit]

Deinonychus "sickle claw"

One of the best-known features of paravians is the presence of an enlarged and strongly curved "sickle claw" on a hyper-extendible second toe, modified to hold the sickle claw clear of the ground when walking, most notably developed in the dromaeosaurids and troodontids. While this characteristic claw and its associated modifications to the anatomy of the foot (such as a shortened metatarsus in eudromaeosaurs) had been known since the mid 20th Century, their possible functions were the subject mainly of speculation, and few actual studies were published. Initial speculation regarded the claws as slashing implements used to disembowel large prey. In this scenario, the shortened upper foot would serve as an anchor point for powerful tendons to improve kicking ability. However, subsequent studies of the actual claw shape showed that the underside of the claw was only weakly keeled and would not have been an effective cutting instrument. Instead, it appeared to be more of a hooking implement. Manning et al. suggested in 2006 that the claws were similar to crampons and were used for climbing, and in the case of larger species or individuals, climbing up the flanks of very large prey.[14]

A larger study of sickle-claw function, published in 2011 by Fowler and colleagues, concluded that the earlier study by Manning and colleagues was correct and that the "sickle claws" would have been ineffective as cutting weapons. They compared the claw and overall foot anatomy of various primitive species with modern birds to shed light on their actual function. Fowler and colleagues showed that many modern predatory birds also have enlarged claws on the second toes. In modern raptors, these claws are used to help grip and hold prey of sizes smaller than or equal to the predator, while the birds use their body weight to pin their prey to the ground and eat it alive.[10] Fowler and colleagues suggested that this behavior is entirely consistent with the anatomy of advanced dromaeosaurids like Deinonychus, which had slightly opposing first toes and strong tendons in the toes and foot. This makes it likely that advanced dromaeosaurids also used their claws to puncture and grip their prey to aid in pinning it to the ground, while using shallow wing beats and tail movements to stabilize themselves.[10] Other lines of evidence for this behavior include teeth which had large, hooked serrations only on the back edge (useful in pulling flesh upward rather than slicing it) and large claws on the wings (for greater maneuvering of prey while mantling it with the wings).[10]

In more primitive dromaeosaurids and in troodontids, the feet were not as specialized and the claws were not as large or as hooked. Additionally, the toe joints allowed more range of motion than the simple up-down movements of advanced dromaeosaurids. This makes it likely that these species specialized in smaller prey that could be pinned using only the inner toes, not requiring the feet to be as strong or sturdy.[10]

Classification[edit]

The name Paraves was coined by Paul Sereno in 1997.[15] The clade was defined by Sereno in 1998 as a branch-based clade containing all Maniraptora closer to Neornithes (which includes all the birds living in the world today) than to Oviraptor.[16]

Also in 1997, a node-based clade called Eumaniraptora ("true maniraptorans") was named by Padian, Hutchinson and Holtz. They defined their clade to include only birds and deinonychosaurs. Paraves and Eumaniraptora are generally considered to be synonyms, though a few phylogenetic studies suggest that the two groups have a similar but not identical content; Agnolín and Novas (2011) recovered scansoriopterygids and alvarezsaurids as paravians that weren't eumaniraptorans,[17] while Turner, Makovicky and Norell (2012) recovered Epidexipteryx as the only known non-eumaniraptoran paravian.[18]

Since the 1960s, the dromaeosaurids and troodontids have often been classified together in a group or clade named the Deinonychosauria, initially based primarily on the presence of a retractable second toe with sickle-claw (now also known to be present in some primitive birds). The name Deinonychosauria was coined by Ned Colbert and Dale Russell in 1969, and defined as a clade (all theropods closer to dromaeosaurids than to birds) by Jaques Gauthier in 1986. However, several more recent studies have cast doubt on the hypothesis that dromaeosaurids and troodontids were more closely related to each other than either was to birds, instead finding that troodontids were more closely related to birds than to dromaeosaurids.[19][20] Because Deinonychosauria was originally defined as all animals closer to dromaeosaurids than to birds without specific reference to troodontids, this would render Deinonychosauria a synonym of Dromaeosauridae.[20]

The cladogram below follows the results of a phylogenetic study by Pascal Godefroit and colleagues in 2013.[21][22]

Paraves

Scansoriopterygidae




Eosinopteryx


Eumaniraptora

Dromaeosauridae




Troodontidae




Avialae







References[edit]

  1. ^ Bhullar, B.A. et al. (2012) have paedomorphic dinosaur skulls. Nature, 487(7406):223-226. doi: 10.1038/nature11146.
  2. ^ a b Turner, Alan H.; Pol, Diego; Clarke, Julia A.; Erickson, Gregory M.; Norell, M. (2007). "A basal dromaeosaurid and size evolution preceding avian flight". Science 317 (5843): 1378–1381. Bibcode:2007Sci...317.1378T. doi:10.1126/science.1144066. PMID 17823350. 
  3. ^ Hu, Dongyu; Lianhi, Hou; Zhang, Lijun; Xu, Xing (2009). "A pre-Archaeopteryx troodontid theropod from China with long feathers on the metatarsus.". Nature 461: 640–643. Bibcode:2009Natur.461..640H. doi:10.1038/nature08322. PMID 19794491. 
  4. ^ Xing, X.; Zhou, Z.; Wang, X.; Kuang, X.; Zhang, F.; Du, X. (2003). "Four-winged dinosaurs from China". Nature 421 (6921): 335–340. Bibcode:2003Natur.421..335X. doi:10.1038/nature01342. PMID 12540892. 
  5. ^ Xu, X.; Zhang, F. (2005). "A new maniraptoran dinosaur from China with long feathers on the metatarsus". Naturwissenschaften 92 (4): 173–177. Bibcode:2005NW.....92..173X. doi:10.1007/s00114-004-0604-y. PMID 15685441. 
  6. ^ Palaeontology: Dinosaurs take to the air
  7. ^ New insights into the origin of birds
  8. ^ Li, Rihui; Lockley, M.G., Makovicky, P.J., Matsukawa, M., Norell, M.A., Harris, J.D. and Liu, M. (2007). "Behavioral and faunal implications of Early Cretaceous deinonychosaur trackways from China". Naturwissenschaften 95 (3): 185–91. Bibcode:2008NW.....95..185L. doi:10.1007/s00114-007-0310-7. PMID 17952398. 
  9. ^ Longrich, N.R.; Currie, P.J. (2009). "A microraptorine (Dinosauria–Dromaeosauridae) from the Late Cretaceous of North America". PNAS 106 (13): 5002–7. Bibcode:2009PNAS..106.5002L. doi:10.1073/pnas.0811664106. PMC 2664043. PMID 19289829. 
  10. ^ a b c d e f g h Fowler, D.W.; Freedman, E.A.; Scannella, J.B.; Kambic, R.E. (2011). "The Predatory Ecology of Deinonychus and the Origin of Flapping in Birds". PLoS ONE 6 (12): e28964. Bibcode:2011PLoSO...628964F. doi:10.1371/journal.pone.0028964. PMC 3237572. PMID 22194962. 
  11. ^ Z., Csiki; Vremir, M.; Brusatte, S. L.; and Norell, M. A. (in press). "An aberrant island-dwelling theropod dinosaur from the Late Cretaceous of Romania". Proceedings of the National Academy of Sciences of the United States of America 107 (35): 15357–61. Bibcode:2010PNAS..10715357C. doi:10.1073/pnas.1006970107. PMC 2932599. PMID 20805514.  Supporting Information
  12. ^ The asymmetry of the carpal joint and the evolution of wing folding in maniraptoran theropod dinosaurs
  13. ^ Zanno, L.E.; Makovicky, P.J. (2011). "Herbivorous ecomorphology and specialization patterns in theropod dinosaur evolution". Proc Natl Acad Sci USA 108: 232–237. Bibcode:2011PNAS..108..232Z. doi:10.1073/pnas.1011924108. 
  14. ^ Manning, P.L.; Payne, D.; Pennicott, J.; Barrett, P.M.; Ennos, R.A. (2006). "Dinosaur killer claws or climbing crampons?". Biology Letters 22: 110–112. 
  15. ^ Sereno, P. C., 1997, "The origin and evolution of dinosaurs", Annual Review of Earth & Planetary Sciences 25:435- 489. (21)
  16. ^ Sereno, P. C., 1998, "A rationale for phylogenetic definitions, with application to the higher level taxonomy of Dinosauria", Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 210:41-83. (23)
  17. ^ Agnolín, Federico L.; Novas, Fernando E. (2011). "Unenlagiid theropods: are they members of the Dromaeosauridae (Theropoda, Maniraptora)?". Anais da Academia Brasileira de Ciências 83 (1): 117–162. doi:10.1590/S0001-37652011000100008. 
  18. ^ Alan Hamilton Turner, Peter J. Makovicky and Mark Norell (2012). "A review of dromaeosaurid systematics and paravian phylogeny". Bulletin of the American Museum of Natural History 371: 1–206. doi:10.1206/748.1. 
  19. ^ Godefroit, Pascal; Cau, Andrea; Hu, Dong-Yu; Escuillié, François; Wu, Wenhao; Dyke, Gareth (2013). "A Jurassic avialan dinosaur from China resolves the early phylogenetic history of birds". Nature. in press. doi:10.1038/nature12168. PMID 23719374.  edit
  20. ^ a b Mortimer, M. (2012): The Theropod Database: Phylogeny of taxa. Retrieved 2013-AUG-15.
  21. ^ Agnolín, F. L.; Novas, F. E. (2013). "Systematic Palaeontology". Avian Ancestors. SpringerBriefs in Earth System Sciences. p. 9. doi:10.1007/978-94-007-5637-3_3. ISBN 978-94-007-5636-6.  edit
  22. ^ Pascal Godefroit, Andrea Cau, Hu Dong-Yu, François Escuillié, Wu Wenhao and Gareth Dyke (2013). "A Jurassic avialan dinosaur from China resolves the early phylogenetic history of birds". Nature. in press. doi:10.1038/nature12168. PMID 23719374.