Pathophysiology of multiple sclerosis

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Structure of a typical neuron
Myelin sheath of a healthy neuron

Multiple sclerosis (MS) is a condition where the CNS of a person present a special kind of distributed glial scars (sclerosis) [1] which are a remaining of a previous inflammatory demyelination. MS pathophysiology is complex and still under investigation and there is no agreement about its scope. It is considered a pathological entity by some authors[2] and a clinical entity by some others.[3] From a pathological point of view, the demyelinating lesions can be classified as encephalomyelitis, and sometimes the disease is known as encephalomyelitis disseminata.

In MS, an unknown underlying condition causes damage in two phases. First some MRI-abnormal areas with hidden damage appear in the brain and spine (NAWM, NAGM, DAWM), followed later by leaks in the blood–brain barrier where immune cells infiltrate causing the known demyelination[4] and axon destruction.[5] Some clusters of activated microglia, transection of axons and myelin degeneration is present before the BBB breaks down and the immune attack begins[6][7][8]

Pathophysiology is a convergence of pathology with physiology. Pathology is the medical discipline that describes conditions typically observed during a disease state, whereas physiology is the biological discipline that describes processes or mechanisms operating within an organism. Referring to MS, the pathology describes the lesions associated to the condition and physiology refers to the different processes that lead to their development.

Pathology[edit]

Multiple sclerosis can be pathologically defined as the presence of distributed scars (or sclerosis) in the central nervous system.[9] These sclerosis are the remainings of previous demyelinating lesions in the CNS white matter of a patient (encephalomyelitis) showing special characteristics, like for example confluent instead of perivenous demyelination.[10]

Multiple sclerosis differs from other idiopathic inflammatory demyelinating diseases in its confluent subpial cortical lesions, being a hallmark exclusively present in MS patients,[11]

Normally the WM lesions appear along to other kind of damage such as NAWM (normal appearing white matter) and grey matter lesions, but MS main findings take place inside the white matter, and lesions appear mainly in a peri-ventricular distribution (lesions clustered around the ventricles of the brain), but apart from the usually known white matter demyelination, also the cortex and deep gray matter (GM) nuclei are affected, together with diffuse injury of the normal-appearing white matter.[12] MS is active even during remission periods.[13] GM atrophy is independent of the MS lesions and is associated with physical disability, fatigue, and cognitive impairment in MS[14]

At least five characteristics are present in CNS tissues of MS patients: Inflammation beyond classical white matter lesions, intrathecal Ig production with oligoclonal bands, an environment fostering immune cell persistence, Follicle-like aggregates in the meninges and a disruption of the blood–brain barrier also outside of active lesions.[15] The scars that give the name to the condition are produced by the astrocyte cells healing old lesions.[16]

Physiology of MS. The lesion development process[edit]

Currently it is unknown what is the primary cause of MS. Current models can be divided in two groups. Inside-out and Outside-in. In the first ones, it is hypothesed that a problem in the CNS cells produce a immune response that destroys myelin and finally breaks the BBB. In the second models, an external factor produce BBB leaks, enters the CNS, and destroys myelin and axons.[17]

Whatever the underlying condition for MS is, some damage is triggered by a CSF unknown soluble factor, which is produced in meningeal areas and diffuses into the cortical parenchyma. It destroys myelin either directly or indirectly through microglia activation.[11]

Confluent subpial cortical lesions are the most specific finding for MS, being exclusively present in MS patients, though currently it can only be detected at autopsy.[11]

Blood–brain barrier disruption[edit]

The blood–brain barrier (BBB) is a protective barrier that denies the entrance of foreign material into the nervous system. BBB disruption is the moment in which penetration of the barrier by lymphocytes occur and has been considered one of the early problems in MS lesions.[18]

The BBB is composed of endothelial cells which line the blood vessel walls of the central nervous system. Compared to normal endothelial cells, the cells lining the BBB are connected by occludin and claudin which form tight junctions in order to create a barrier to keep out larger molecules such as proteins. In order to pass through, molecules must be taken in by transport proteins or an alteration in the BBB permeability must occur, such as interactions with associated adaptor proteins like ZO-1, ZO-2 and ZO-3.[19] The BBB is compromised due to active recruitment of lymphocytes and monocytes and their migration across the barrier. Release of chemokines allow for the activation of adhesion molecules on the lymphocytes and monocytes, resulting in an interaction with the endothelial cells of the BBB which then activate the expression of matrix metalloproteinases to degrade the barrier.[19] This results in disruption of the BBB, causing an increase in barrier permeability due to the degradation of tight junctions which maintain barrier integrity. Inducing the formation of tight junctions can restore BBB integrity and reduces its permeability, which can be used to reduce the damage caused by lymphocyte and monocyte migration across the barrier as restored integrity would restrict their movement.[20]

After barrier breakdown symptoms may appear, such as swelling. Activation of macrophages and lymphocytes and their migration across the barrier may result in direct attacks on myelin sheaths within the central nervous system, leading to the characteristic demyelination event observed in MS.[21] After demyelination has occurred, the degraded myelin sheath components, such as myelin basic proteins and Myelin oligodendrocyte glycoproteins, are then used as identifying factors to facilitate further immune activity upon myelin sheaths. Further activation of cytokines is also induced by macrophage and lymphocyte activity, promoting inflammatory activity as well continued activation of proteins such as matrix metalloproteinases, which have detrimental effect on BBB integrity.[22]

Recently it has been found that BBB damage happens even in non-enhancing lesions.[23] MS has an important vascular component.[24]

Postmortem BBB study[edit]

Postmortem studies of the BBB, specially the vascular endotelium, show immunological abnormalities. Microvessels in periplaque areas coexpressed HLA-DR and VCAM-1, some others HLA-DR and urokinase plasminogen activator receptor, and others HLA-DR and ICAM-1.[25]

In vivo BBB study[edit]

As lesions appear (using MRI) in "Normal-appearing white matter" (NAWM), the cause that finally triggers the BBB disruption is supposed to be there.[26] The damaged white matter is known as "Normal-appearing white matter" (NAWM) and is where lesions appear.[4] These lesions form in NAWM before blood–brain barrier breakdown.[27]

BBB can be broken centripetally or centrifugally, the first form being the most normal.[28] Several possible biochemical disrupters have been proposed. Some hypothesis about how the BBB is compromised revolve around the presence of different compounds in the blood that could interact with the vascular vessels only in the NAWM areas. The permeability of two cytokines, Interleukin 15 and LPS, could be involved in the BBB breakdown.[29] The BBB breakdown is responsible for monocyte infiltration and inflammation in the brain.[30] Monocyte migration and LFA-1-mediated attachment to brain microvascular endothelia is regulated by SDF-1alpha through Lyn kinase[31]

Using iron nanoparticles, involvement of macrophages in the BBB breakdown can be detected.[32] A special role is played by Matrix metalloproteinases. These are a group of proteases that increase T-cells permeability of the blood–brain barrier, specially in the case of MMP-9,[22] and are supposed to be related to the mechanism of action of interferons.[33]

Whether BBB dysfunction is the cause or the consequence of MS[34] is still disputed,because activated T-Cells can cross a healthy BBB when they express adhesion proteins.[35] Apart from that, activated T-Cells can cross a healthy BBB when they express adhesion proteins.[35] (Adhesion molecules could also play a role in inflammation[36]) In particular, one of these adhesion proteins involved is ALCAM (Activated Leukocyte Cell Adhesion Molecule, also called CD166), and is under study as therapeutic target.[37] Other protein also involved is CXCL12,[38] which is found also in brain biopsies of inflammatory elements,[39] and which could be related to the behavior of CXCL13 under methylprednisolone therapy.[40] Some molecular biochemical models for relapses have been proposed.[41]

Normally, gadolinium enhancement is used to show BBB disruption on MRIs.[42] Abnormal tight junctions are present in both SPMS and PPMS. They appear in active white matter lesions, and gray matter in SPMS. They persist in inactive lesions, particularly in PPMS.[43]

A deficiency of uric acid has been implicated in this process. Uric acid added in physiological concentrations (i.e. achieving normal concentrations) is therapeutic in MS by preventing the breakdown of the blood brain barrier through inactivation of peroxynitrite.[44] The low level of uric acid found in MS victims is manifestedly causative rather than a consequence of tissue damage in the white matter lesions,[45] but not in the grey matter lesions.[46] Besides, uric acid levels are lower during relapses.[47]

Origin of the normal-appearing tissues[edit]

The cause why the normal appearing areas appear in the brain is unknown. Historically, several theories about how this happens has been presented.

Old blood flow theories[edit]

Venous pathology has been associated with MS for more than a century. Pathologist Georg Eduard Rindfleisch noted in 1863 that the inflammation-associated lesions were distributed around veins.[48] Some other authors like Tracy Putnam[49] pointed to venous obstructions.

Some authors like Franz Schelling proposed a mechanical damage procedure based on violent blood reflux.[50] Later the focus moved to softer hemodynamic abnormalities, which were showing precede changes in sub-cortical gray matter[51] and in substantia nigra.[52] However, such reports of a "hemodynamic cause of MS" are not universal, and possibly not even common. At this time the evidence is largely anecdotal and some MS patients have no blood flow issues. Possibly vascular problems may be an aggravating factor, like many others in MS. Indeed the research, by demonstrating patients with no hemodynamic problems actually prove that this is not the only cause of MS.

Endothelium theories[edit]

Other theories point to a possible primary endothelial dysfunction.[53] The importance of vascular misbehaviour in MS pathogenesis has also been independently confirmed by seven-tesla MRI.[54] It is reported that a number of studies have provided evidence of vascular occlusion in MS, which suggest the possibility of a primary vascular injury in MS lesions or at least that they are occasionally correlated.[55]

Some morphologically special medullar lesions (wedge-shaped) have also been linked to venous insufficiency.[56]

It has also been pointed out that some infectious agents with positive correlation to MS, specially Chlamydia pneumoniae, can cause problems in veins and arteries walls[57]

CCSVI[edit]

The term "chronic cerebrospinal venous insufficiency" was coined in 2008 by Paolo Zamboni, who described it in patients with multiple sclerosis. Instead of intracranial venous problems he described extracranial blockages, and he stated that the location of those obstructions seemed to influence the clinical course of the disease.[58] According to Zamboni, CCSVI had a high sensitivity and specificity differentiating healthy individuals from those with multiple sclerosis.[59] Zamboni's results were criticized as some of his studies were not blinded and they need to be verified by further studies.[58][59] As of 2010 the theory is considered at least defensible[60]

A more detailed evidence of a correlation between the place and type of venous malformations imaged and the reported symptoms of multiple sclerosis in the same patients was published in 2010.[61]

Haemodynamic problems have been found in the blood flow of MS patients using Doppler,[62] initially using transcranial color-coded duplex sonography (TCCS), pointing to a relationship with a vascular disease called chronic cerebro-spinal venous insufficiency (CCSVI).[63][64] In 2010 there were conflicting results when evaluating the relationship between MS and CCSVI.[65][66][67][68] but is important to note that positives have appeared among the blinded studies.

CSF flow theories[edit]

Other theories focus in the possible role of cerebrospinal fluid flow impairment.[69] This theory could be partially consistent with the previous one[70]

Currently a small trial with 8 participants has been performed[71]

CSF composition and Kir4.1[edit]

Whatever the underlying primary condition is, it is expected to be a soluble factor in the CSF,[11] maybe an unknown cytokine or ceramide, or a combination of them.

It has been reported several times that CSF of some MS patients can damage myelin in culture[72][73][74][75][76] and mice[77][78] and ceramides have been recently brought into the stage.[79] Whatever the problem is, it produces apoptosis of neurons respecting astrocytes[80]

In 2012 it was reported that a subset of MS patients have a seropositive anti-Kir4.1 status,[81] which can represent up to a 47% of the MS cases, and the study has been reproduced by at least one other group.[82]

If the existence of this subset of MS is confirmed the situation will be similar to what happened for Devic Disease and Aquaporine-4. MS could be considered a heterogeneous condition or a new medical entity will be defined for these cases.

Primary neuro-degeneration theories[edit]

Some authors propose a primary neurodegenerative factor based in a trans-synaptic degeneration, which is compatible with other models based in the CSF biochemistry.[83]

Others propose an oligodendrocyte stress as primary dysfunction, which activates microglia creating the NAWM areas[84] and others propose a yet-unknown intrinsic CNS trigger induces the microglial activation and clustering, which they point out could be again axonal injury or oligodendrocyte stress.[85]

Finally, other authors point to a cortical pathology which starts in the brain external layer (pial surface) and progresses extending into the brain inner layers[86]

MS biomarkers[edit]

Diagnosis of MS has always been made by clinical examination, supported by MRI or CSF tests. According with both the pure autoimmune hypothesis and the immune-mediated hypothesis,[87] researchers expect to find biomarkers able to yield a better diagnosis, and able to predict the response to the different available treatments.[88] As of 2014 no biomarker with perfect correlation has been found,[89] but some of them have shown a special behavior like an autoantibody against the potassium channel Kir4.1.[90] Biomarkers are expected to play an important role in the near future[91]

As of 2014, the only specific biomarkers found to date are four proteins in the CSF: CRTAC-IB (cartilage acidic protein), tetranectin (a plasminogen-binding protein), SPARC-like protein (a calcium binding cell signalling glycoprotein), and autotaxin-T (a phosphodiesterase)[92]

Molecular biomarkers in blood[edit]

Blood serum of MS patients shows abnormalities. Endothelin-1 shows maybe the most striking discordance between patients and controls, being a 224% higher in patients than controls.[93]

Creatine and Uric acid levels are lower than normal, at least in women.[94] Ex vivo CD4(+) T cells isolated from the circulation show a wrong TIM-3 (Immunoregulation) behavior,[95] and relapses are associated with CD8(+) T Cells.[96] There is a set of differentially expressed genes between MS and healthy subjects in peripheral blood T cells from clinically active MS patients. There are also differences between acute relapses and complete remissions.[97] Platelets are known to have abnormal high levels.[98]

MS patients are also known to be CD46 defective, and this leads to Interleukin-10 (IL-10) deficiency, being this involved in the inflammatory reactions.[99] Levels of IL-2, IL-10, and GM-CSF are lower in MS females than normal. IL6 is higher instead. These findings do not apply to men.[100] This IL-10 interleukin could be related to the mechanism of action of methylprednisolone, together with CCL2. Interleukin IL-12 is also known to be associated with relapses, but this is unlikely to be related to the response to steroids[101]

Kallikreins are found in serum and are associated with secondary progressive stage.[102] Related to this, it has been found that B1-receptors, part of the kallikrein-kinin-system, are involved in the BBB breakdown[103][104]

There is evidence of Apoptosis-related molecules in blood and they are related to disease activity.[105] B cells in CSF appear, and they correlate with early brain inflammation.[106] There is also an overexpression of IgG-free kappa light chain protein in both CIS and RR-MS patients, compared with control subjects, together with an increased expression of an isoforms of apolipoprotein E in RR-MS.[107] Expression of some specific proteins in circulating CD4+ T cells is a risk factor for conversion from CIS to clinically defined multiple sclerosis.[108]

Recently, unique autoantibody patterns that distinguish RRMS, secondary progressive (SPMS), and primary progressive (PPMS) have been found, based on up- and down-regulation of CNS antigens,[109] tested by microarrays. In particular, RRMS is characterized by autoantibodies to heat shock proteins that were not observed in PPMS or SPMS. These antibodies patterns can be used to monitor disease progression.[110][111]

Finally, a promising biomarker under study is an antibody against the potassium channel protein KIR4.1.[112] This biomarker has been reported to be present in around a half of MS patients, but in nearly none of the controls.

MS types by genetics[edit]

By RNA profile[edit]

Also in blood serum can be found the RNA type of the MS patient. Two types have been proposed classifying the patients as MSA or MSB, allegedly predicting future inflammatory events.[113]

By transcription factor[edit]

The autoimmune disease-associated transcription factors EOMES and TBX21 are dysregulated in multiple sclerosis and define a molecular subtype of disease.[114] The importance of this discovery is that the expression of these genes appears in blood and can be measured by a simple blood analysis.

In blood vessels tissue[edit]

Endothelial dysfunction has been reported in MS[115] and could be used as biomarker via biopsia. Blood circulation is slower in MS patients and can be meassured using contrast[116] or by MRI[117]

Interleukin-12p40 has been reported to separate RRMS and CIS from other neurological diseases[118]

In Cerebrospinal Fluid[edit]

It has been known for quite some time that glutamate is present at higher levels in CSF during relapses[119] and to MS patients before relapses compared to healthy subjects. This observation has been linked to the activity of the infiltrating leukocytes and activated microglia, and to the damage to the axons[120] and to the oligodendrocytes damage, supposed to be the main cleaning agents for glutamate[121]

Also a specific MS protein has been found in CSF, chromogranin A, possibly related to axonal degeneration. It appears together with clusterin and complement C3, markers of complement-mediated inflammatory reactions.[122] Also Fibroblast growth factor-2 appear higher at CSF.[123]

CSF also shows oligoclonal bands (OCB) in the majority (around 95%) of the patients. Several studies have reported differences between patients with and without OCB with regard to clinical parameters such as age, gender, disease duration, clinical severity and several MRI characteristics, together with a varying lesion load.[124] Free kappa chains in CSF are documented and have been proposed as a marker for MS evolution[125]

Varicella-zoster virus particles have been found in CSF of patients during relapses, but this particles are virtually absent during remissions.[126] Plasma Cells in the cerebrospinal fluid of MS patients could also be used for diagnosis, because they have been found to produce myelin-specific antibodies.[127] As of 2011, a recently discovered myelin protein TPPP/p25, has been found in CSF of MS patients[128]

A study found that quantification of several immune cell subsets, both in blood and CSF, showed differences between intrathecal (from the spine) and systemic immunity, and between CSF cell subtypes in the inflammatory and noninflammatory groups (basically RRMS/SPMS compared to PPMS). This showed that some patients diagnosed with PPMS shared an inflammatory profile with RRMS and SPMS, while others didn't.[129]

Other study found using a proteomic analysis of the CSF that the peak intensity of the signals corresponding to Secretogranin II and Protein 7B2 were significantly upregulated in RRMS patients compared to PrMS (p<0.05), whereas the signals of Fibrinogen and Fibrinopeptide A were significantly downregulated in CIS compared to PrMS patients[130]

As of 2014 it is considered that the CSF signature of MS is a combination of cytokines[131]

Micro-RNA as biomarker[edit]

Micro-RNA are non-coding RNA of around 22 nucleotides in length. They are present in blood and in CSF. Several studies have found specific micro-RNA signatures for MS[132]

Biomarkers in brain cells and biopsies[edit]

Abnormal sodium distribution has been reported in living MS brains. In the early-stage RRMS patients, sodium MRI revealed abnormally high concentrations of sodium in brainstem, cerebellum and temporal pole. In the advanced-stage RRMS patients, abnormally high sodium accumulation was widespread throughout the whole brain, including normal appearing brain tissue.[133] It is currently unknown whether post-mortem brains are consistent with this observation.

The pre-active lesions are clusters of microglia driven by the HspB5 protein, thought to be produced by stressed oligodendrocytes. The presence of HspB5 in biopsies can be a marker for lesion development.[7]

Biomarkers by MRI[edit]

Recently SWI adjusted magnetic resonance has given results close to 100% specificity and sensitivity respect McDonalds CDMS status[134] and Magnetization transfer MRI has shown that NAWM evolves during the disease reducing its magnetization transfer coeficient[135]

Subgroups by molecular biomarkers[edit]

Differences have been found between the proteines expressed by patients and healthy subjects, and between attacks and remissions. Using DNA microarray technology groups of molecular biomarkers can be established.[136] For example, it is known that Anti-lipid oligoclonal IgM bands (OCMB) distinguish MS patients with early aggressive course and that these patients show a favourable response to immunomodulatory treatment.[137]

It seems that Fas and MIF are candidate biomarkers of progressive neurodegeneration. Upregulated levels of sFas (soluble form of Fas molecule) were found in MS patients with hypotense lesions with progressive neurodegeneration, and also levels of MIF appeared to be higher in progressive than in non-progressing patients. Serum TNF-α and CCL2 seem to reflect the presence of inflammatory responses in primary progressive MS.[138]

As previously reported, there is an antibody against the potassium channel protein KIR4.1[112] which is present in around a half of MS patients, but in nearly none of the controls, pointing towards an heterogeneous etiology in MS. The same happens with B-Cells[139]

See also[edit]

References[edit]

  1. ^ Dutta R, Trapp BD. "Pathology and definition of multiple sclerosis, Rev Prat. 2006 Jun 30;56(12):1293-8.
  2. ^ Lassmann H (2010). "Acute disseminated encephalomyelitis and multiple sclerosis". Brain 133 (2): 317–9. doi:10.1093/brain/awp342. PMID 20129937. 
  3. ^ McDonald WI, Compston A, Edan G et al. (2001). "Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis". Annals of Neurology 50 (1): 121–7. doi:10.1002/ana.1032. PMID 11456302. 
  4. ^ a b Goodkin DE, Rooney WD, Sloan R et al. (December 1998). "A serial study of new MS lesions and the white matter from which they arise". Neurology 51 (6): 1689–97. doi:10.1212/wnl.51.6.1689. PMID 9855524. 
  5. ^ Tallantyre EC1, Bø L, Al-Rawashdeh O, Owens T, Polman CH, Lowe JS, Evangelou N. "Clinico-pathological evidence that axonal loss underlies disability in progressive multiple sclerosis. Acta Neuropathol. 2010 May;119(5):601-15. doi: 10.1007/s00401-009-0618-9. Epub 2009 Dec 5.
  6. ^ van der Valk P, Amor S; Amor (June 2009). "Preactive lesions in multiple sclerosis". Current Opinion in Neurology 22 (3): 207–13. doi:10.1097/WCO.0b013e32832b4c76. PMID 19417567. 
  7. ^ a b Bsibsi M, Holtman IR, Gerritsen WH, Eggen BJ, Boddeke E, van der Valk P, van Noort JM, Amor S. Alpha-B-Crystallin Induces an Immune-Regulatory and Antiviral Microglial Response in Preactive Multiple Sclerosis Lesions, J Neuropathol Exp Neurol. 2013 Sep 13, doi:10.1097/NEN.0b013e3182a776bf PMID 24042199
  8. ^ Ontaneda et al. (Nov 2014). "Identifying the Start of Multiple Sclerosis Injury: A Serial DTI Study". J Neuroimaging 24 (6): 569–76. doi:10.1111/jon.12082. 
  9. ^ Dutta R1, Trapp BD. Pathology and definition of multiple sclerosis. Rev Prat. 2006 Jun 30;56(12):1293-8.
  10. ^ Nathan P. Young , Brian G. Weinshenker , Joseph E. Parisi , B. Scheithauer , C. Giannini , Shanu F. Roemer , Kristine M. Thomsen , Jayawant N. Mandrekar , Bradley J. Erickson , Claudia F. Lucchinetti, Perivenous demyelination: association with clinically defined acute disseminated encephalomyelitis and comparison with pathologically confirmed multiple sclerosis, Brain 2010, DOI: http://dx.doi.org/10.1093/brain/awp321 333-348 First published online: 3 February 2010
  11. ^ a b c d Hans Lassmann. Multiple sclerosis: Lessons from molecular neuropathology. Experimental Neurology, Volume 262, Part A, December 2014, Pages 2–7, doi:10.1016/j.expneurol.2013.12.003 [1]
  12. ^ Lassmann H, Brück W, Lucchinetti CF; Brück; Lucchinetti (April 2007). "The immunopathology of multiple sclerosis: an overview". Brain Pathol. 17 (2): 210–8. doi:10.1111/j.1750-3639.2007.00064.x. PMID 17388952. 
  13. ^ Kirov I, Patil V, Babb J, Rusinek H, Herbert J, Gonen O; Patil; Babb; Rusinek; Herbert; Gonen (June 2009). "MR Spectroscopy Indicates Diffuse Multiple Sclerosis Activity During Remission". J. Neurol. Neurosurg. Psychiatr. 80 (12): 1330–6. doi:10.1136/jnnp.2009.176263. PMC 2900785. PMID 19546105. 
  14. ^ Pirko I, Lucchinetti CF, Sriram S, Bakshi R; Lucchinetti; Sriram; Bakshi (February 2007). "Gray matter involvement in multiple sclerosis". Neurology 68 (9): 634–42. doi:10.1212/01.wnl.0000250267.85698.7a. PMID 17325269. 
  15. ^ Meinl E, Krumbholz M, Derfuss T, Dewitt D,; Krumbholz; Derfuss; Junker; Hohlfeld (November 2008). "Compartmentalization of inflammation in the CNS: A major mechanism driving progressive multiple sclerosis". J Neurol Sci. 274 (1–2): 42–4. doi:10.1016/j.jns.2008.06.032. PMID 18715571. 
  16. ^ Brosnan C. F., Raine C. S. (2013). "The astrocyte in multiple sclerosis revisited". Glia 61: 453–465. doi:10.1002/glia.22443. 
  17. ^ Ikuo Tsunoda, Robert S. Fujinami, Inside-Out versus Outside-In models for virus induced demyelination: axonal damage triggering demyelination, Springer Seminars in Immunopathology, November 2002, Volume 24, Issue 2, pp 105-125
  18. ^ Alireza Minagar and J Steven Alexander, Blood–brain barrier disruption in multiple sclerosis [2]
  19. ^ a b Correale, Jorge; Andrés Villa (24 July 2006). "The blood–brain-barrier in multiple sclerosis: Functional roles and therapeutic targeting". Autoimmunity 40 (2): 148–160. doi:10.1080/08916930601183522. 
  20. ^ Cristante, Enrico; Simon McArthur, Claudio Mauro, Elisa Maggiolo, Ignacio A. Romero, Marzena Wylezinska-Arridge, Pierre O. Couraud, Jordi Lopez-Tremoleda, Helen C. Christian, Babette B. Weksler, Andrea Malaspina, Egle Solito; Mauro, C.; Maggioli, E.; Romero, I. A.; Wylezinska-Arridge, M.; Couraud, P. O.; Lopez-Tremoleda, J.; Christian, H. C.; Weksler, B. B.; Malaspina, A.; Solito, E. (15 January 2013). "Identification of an essential endogenous regulator of blood–brain barrier integrity, and its pathological and therapeutic implications". Proceedings of the National Academy of Sciences of the United States 110 (3): 832–841. Bibcode:2013PNAS..110..832C. doi:10.1073/pnas.1209362110. 
  21. ^ Prat, Elisabetta; Roland Martin (March–April 2002). "The immunopathogenesis of multiple sclerosis". Journal of Rehabilitation Research and Development 39 (2): 187. 
  22. ^ a b Gray E, Thomas TL, Betmouni S, Scolding N, Love S; Thomas; Betmouni; Scolding; Love (September 2008). "Elevated matrix metalloproteinase-9 and degradation of perineuronal nets in cerebrocortical multiple sclerosis plaques". J Neuropathol Exp Neurol. 67 (9): 888–99. doi:10.1097/NEN.0b013e318183d003. PMID 18716555. 
  23. ^ Soon D, Tozer DJ, Altmann DR, Tofts PS, Miller DH; Tozer; Altmann; Tofts; Miller (2007). "Quantification of subtle blood–brain barrier disruption in non-enhancing lesions in multiple sclerosis: a study of disease and lesion subtypes". Multiple Sclerosis 13 (7): 884–94. doi:10.1177/1352458507076970. PMID 17468443. 
  24. ^ Minagar A, Jy W, Jimenez JJ, Alexander JS; Jy; Jimenez; Alexander (2006). "Multiple sclerosis as a vascular disease". Neurol. Res. 28 (3): 230–5. doi:10.1179/016164106X98080. PMID 16687046. 
  25. ^ Washington R, Burton J, Todd RF 3rd, Newman W, Dragovic L, Dore-Duffy P. "Expression of immunologically relevant endothelial cell activation antigens on isolated central nervous system microvessels from patients with multiple sclerosis, Ann Neurol. 1994 Jan;35(1):89-97., doi:10.1002/ana.410350114 PMID 7506877
  26. ^ Werring DJ, Brassat D, Droogan AG et al. (August 2000). "The pathogenesis of lesions and normal-appearing white matter changes in multiple sclerosis: a serial diffusion MRI study". Brain 123 (8): 1667–76. doi:10.1093/brain/123.8.1667. PMID 10908196. 
  27. ^ Allen et al. (2001). "Pathological abnormalities in the normal-appearing white matter in multiple sclerosis". Neurol Sci 22 (2): 141–4. doi:10.1007/s100720170012. PMID 11603615. 
  28. ^ Shinohara RT, Crainiceanu CM, Caffo BS, Gaitán MI, Reich DS; Crainiceanu; Caffo; Gaitán; Reich (May 2011). "Population-Wide Principal Component-Based Quantification of Blood-Brain-Barrier Dynamics in Multiple Sclerosis". NeuroImage 57 (4): 1430–46. doi:10.1016/j.neuroimage.2011.05.038. PMC 3138825. PMID 21635955. 
  29. ^ Pan W, Hsuchou H, Yu C, Kastin AJ; Hsuchou; Yu; Kastin (2008). "Permeation of blood-borne IL15 across the blood–brain barrier and the effect of LPS". J. Neurochem. 106 (1): 313–9. doi:10.1111/j.1471-4159.2008.05390.x. PMC 3939609. PMID 18384647. 
  30. ^ Reijerkerk A, Kooij G, van der Pol SM, Leyen T, van Het Hof B, Couraud PO, Vivien D, Dijkstra CD, de Vries HE.; Kooij; Van Der Pol; Leyen; Van Het Hof; Couraud; Vivien; Dijkstra; De Vries (2008). "Tissue-type plasminogen activator is a regulator of monocyte diapedesis through the brain endothelial barrier". Journal of Immunology (Baltimore, Md. : 1950) 181 (5): 3567–74. doi:10.4049/jimmunol.181.5.3567. PMID 18714030. 
  31. ^ Malik M, Chen YY, Kienzle MF, Tomkowicz BE, Collman RG, Ptasznik A; Chen; Kienzle; Tomkowicz; Collman; Ptasznik (October 2008). "Monocyte migration and LFA-1 mediated attachment to brain microvascular endothelia is regulated by SDF-1α through Lyn kinase". Journal of Immunology 181 (7): 4632–7. doi:10.4049/jimmunol.181.7.4632. PMC 2721474. PMID 18802065. 
  32. ^ Petry KG, Boiziau C, Dousset V, Brochet B; Boiziau; Dousset; Brochet (2007). "Magnetic resonance imaging of human brain macrophage infiltration". Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics 4 (3): 434–42. doi:10.1016/j.nurt.2007.05.005. PMID 17599709. 
  33. ^ Boz C, Ozmenoglu M, Velioglu S et al. (February 2006). "Matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of matrix metalloproteinase (TIMP-1) in patients with relapsing-remitting multiple sclerosis treated with interferon beta". Clin Neurol Neurosurg. 108 (2): 124–8. doi:10.1016/j.clineuro.2005.01.005. PMID 16412833. 
  34. ^ Waubant E (2006). "Biomarkers indicative of blood–brain barrier disruption in multiple sclerosis". Dis. Markers 22 (4): 235–44. doi:10.1155/2006/709869. PMC 3850823. PMID 17124345. 
  35. ^ a b Multiple Sclerosis at eMedicine
  36. ^ Elovaara I, Ukkonen M, Leppäkynnäs M et al. (April 2000). "Adhesion molecules in multiple sclerosis: relation to subtypes of disease and methylprednisolone therapy". Arch. Neurol. 57 (4): 546–51. doi:10.1001/archneur.57.4.546. PMID 10768630. 
  37. ^ Alexandre Prat, Nicole Beaulieu, Sylvain-Jacques Desjardins, New Therapeutic Target For Treatment Of Multiple Sclerosis, Jan. 2008
  38. ^ McCandless EE, Piccio L, Woerner BM et al. (March 2008). "Pathological Expression of CXCL12 at the Blood-Brain Barrier Correlates with Severity of Multiple Sclerosis". Am J Pathol. 172 (3): 799–808. doi:10.2353/ajpath.2008.070918. PMC 2258272. PMID 18276777. 
  39. ^ Moll NM, Cossoy MB, Fisher E et al. (January 2009). "Imaging correlates of leukocyte accumulation and CXCR4/CXCR12 in multiple sclerosis". Arch. Neurol. 66 (1): 44–53. doi:10.1001/archneurol.2008.512. PMC 2792736. PMID 19139298. 
  40. ^ Michałowska-Wender G, Losy J, Biernacka-Łukanty J, Wender M; Losy; Biernacka-Łukanty; Wender (2008). "Impact of methylprednisolone treatment on the expression of macrophage inflammatory protein 3alpha and B lymphocyte chemoattractant in serum of multiple sclerosis patients" (PDF). Pharmacol Rep. 60 (4): 549–54. PMID 18799824. 
  41. ^ Steinman L (May 2009). "A molecular trio in relapse and remission in multiple sclerosis". Nature Reviews Immunology 9 (6): 440–7. doi:10.1038/nri2548. PMID 19444308. 
  42. ^ Waubant E (2006). "Biomarkers indicative of blood–brain barrier disruption in multiple sclerosis". Disease Markers 22 (4): 235–44. doi:10.1155/2006/709869. PMC 3850823. PMID 17124345. 
  43. ^ Leech S, Kirk J, Plumb J, McQuaid S; Kirk; Plumb; McQuaid (2007). "Persistent endothelial abnormalities and blood–brain barrier leak in primary and secondary progressive multiple sclerosis". Neuropathol. Appl. Neurobiol. 33 (1): 86–98. doi:10.1111/j.1365-2990.2006.00781.x. PMID 17239011. 
  44. ^ Kean R, Spitsin S, Mikheeva T, Scott G, Hooper D; Spitsin; Mikheeva; Scott; Hooper (2000). "The peroxynitrite scavenger uric acid prevents inflammatory cell invasion into the central nervous system in experimental allergic encephalomyelitis through maintenance of blood-central nervous system barrier integrity". Journal of Immunology 165 (11): 6511–8. doi:10.4049/jimmunol.165.11.6511. PMID 11086092. 
  45. ^ Rentzos M, Nikolaou C, Anagnostouli M, Rombos A, Tsakanikas K, Economou M, Dimitrakopoulos A, Karouli M, Vassilopoulos D; Nikolaou; Anagnostouli; Rombos; Tsakanikas; Economou; Dimitrakopoulos; Karouli; Vassilopoulos (2006). "Serum uric acid and multiple sclerosis". Clinical neurology and neurosurgery 108 (6): 527–31. doi:10.1016/j.clineuro.2005.08.004. PMID 16202511. 
  46. ^ van Horssen J, Brink BP, de Vries HE, van der Valk P, Bø L; Brink; De Vries; Van Der Valk; Bø (April 2007). "The blood–brain barrier in cortical multiple sclerosis lesions". J Neuropathol Exp Neurol. 66 (4): 321–8. doi:10.1097/nen.0b013e318040b2de. PMID 17413323. 
  47. ^ Guerrero AL, Martín-Polo J, Laherrán E et al. (April 2008). "Variation of serum uric acid levels in multiple sclerosis during relapses and immunomodulatory treatment". Eur J Neurol. 15 (4): 394–7. doi:10.1111/j.1468-1331.2008.02087.x. PMID 18312403. 
  48. ^ Lassmann H (July 2005). "Multiple sclerosis pathology: evolution of pathogenetic concepts". Brain Pathology 15 (3): 217–22. doi:10.1111/j.1750-3639.2005.tb00523.x. PMID 16196388. [verification needed]
  49. ^ Putnam, T.J. (1937) Evidence of vascular occlusion in multiple sclerosis
  50. ^ Schelling, F (October 1986). "Damaging venous reflux into the skull or spine: relevance to multiple sclerosis". Medical hypotheses 21 (2): 141–8. doi:10.1016/0306-9877(86)90003-4. PMID 3641027. 
  51. ^ Varga AW, Johnson G, Babb JS, Herbert J, Grossman RI, Inglese M; Johnson; Babb; Herbert; Grossman; Inglese (July 2009). "White Matter Hemodynamic Abnormalities precede Sub-cortical Gray Matter Changes in Multiple Sclerosis". J. Neurol. Sci. 282 (1–2): 28–33. doi:10.1016/j.jns.2008.12.036. PMC 2737614. PMID 19181347. 
  52. ^ Walter U, Wagner S, Horowski S, Benecke R, Zettl UK; Wagner; Horowski; Benecke; Zettl (September 2009). "Transcranial brain sonography findings predict disease progression in multiple sclerosis". Neurology 73 (13): 1010–7. doi:10.1212/WNL.0b013e3181b8a9f8. PMID 19657105. 
  53. ^ Leech S, Kirk J, Plumb J, McQuaid S; Kirk; Plumb; McQuaid (February 2007). "Persistent endothelial abnormalities and blood–brain barrier leak in primary and secondary progressive multiple sclerosis". Neuropathol. Appl. Neurobiol. 33 (1): 86–98. doi:10.1111/j.1365-2990.2006.00781.x. PMID 17239011. 
  54. ^ Ge Y, Zohrabian VM, Grossman RI.; Zohrabian; Grossman (2008). "7T MRI: New Vision of Microvascular Abnormalities in Multiple Sclerosis". Archives of neurology 65 (6): 812–6. doi:10.1001/archneur.65.6.812. PMC 2579786. PMID 18541803. 
  55. ^ M. Filippi, G. Comi (2004). "Normal-appearing White and Grey Matter Damage in Multiple Sclerosis. Book review". AJRN 27 (4): 945–946. 
  56. ^ Qiu, W; Raven, S; Wu, JS; Carroll, WM; Mastaglia, FL; Kermode, AG (March 2010). "Wedge-shaped medullary lesions in multiple sclerosis". Journal of the neurological sciences 290 (1–2): 190–3. doi:10.1016/j.jns.2009.12.017. PMID 20056253. 
  57. ^ J. Gutiérrez, J. Linares-Palomino, C. Lopez-Espada, M. Rodríguez, E. Ros, G. Piédrola and M. del C. Maroto, "Chlamydia pneumoniae DNA in the Arterial Wall of Patients with Peripheral Vascular Disease, Infection Volume 29, Number 4 (2001), 196-200 doi:10.1007/s15010-001-1180-0
  58. ^ a b Zamboni P, Galeotti R, Menegatti E et al. (April 2009). "Chronic cerebrospinal venous insufficiency in patients with multiple sclerosis". J. Neurol. Neurosurg. Psychiatr. 80 (4): 392–9. doi:10.1136/jnnp.2008.157164. PMC 2647682. PMID 19060024. 
  59. ^ a b Khan O, Filippi M, Freedman MS et al. (March 2010). "Chronic cerebrospinal venous insufficiency and multiple sclerosis". Annals of Neurology 67 (3): 286–90. doi:10.1002/ana.22001. PMID 20373339. 
  60. ^ Bryce Weir (2010). "MS, A vascular ethiology?". Can. J. Neurol. Sci. 37: 745–757. 
  61. ^ Bartolomei I. et al. (April 2010). "Haemodynamic patterns in chronic cereblrospinal venous insufficiency in multiple sclerosis. Correlation of symptoms at onset and clinical course". Int Angiol 29 (2): 183–8. PMID 20351667. 
  62. ^ Zamboni P, Menegatti E, Bartolomei I et al. (November 2007). "Intracranial venous haemodynamics in multiple sclerosis". Curr Neurovasc Res. 4 (4): 252–8. doi:10.2174/156720207782446298. PMID 18045150. 
  63. ^ Zamboni P, Galeotti R, Menegatti E et al. (April 2009). "Chronic cerebrospinal venous insufficiency in patients with multiple sclerosis". J. Neurol. Neurosurg. Psychiatr. 80 (4): 392–9. doi:10.1136/jnnp.2008.157164. PMC 2647682. PMID 19060024. 
  64. ^ Lee AB, Laredo J, Neville R; Laredo; Neville (April 2010). "Embryological background of truncular venous malformation in the extracranial venous pathways as the cause of chronic cerebro spinal venous insufficiency". Int Angiol 29 (2): 95–108. PMID 20351665. 
  65. ^ Al-Omari MH, Rousan LA; Rousan (April 2010). "Internal jugular vein morphology and hemodynamics in patients with multiple sclerosis". Int Angiol 29 (2): 115–20. PMID 20351667. 
  66. ^ Krogias C, Schröder A, Wiendl H, Hohlfeld R, Gold R; Schröder; Wiendl; Hohlfeld; Gold (April 2010). "["Chronic cerebrospinal venous insufficiency" and multiple sclerosis : Critical analysis and first observation in an unselected cohort of MS patients.]". Nervenarzt 81 (6): 740–6. doi:10.1007/s00115-010-2972-1. PMID 20386873. 
  67. ^ Doepp F, Paul F, Valdueza JM, Schmierer K, Schreiber SJ; Paul; Valdueza; Schmierer; Schreiber (August 2010). "No cerebrocervical venous congestion in patients with multiple sclerosis". Annals of Neurology 68 (2): 173–83. doi:10.1002/ana.22085. PMID 20695010. 
  68. ^ Sundström, P.; Wåhlin, A.; Ambarki, K.; Birgander, R.; Eklund, A.; Malm, J. (2010). "Venous and cerebrospinal fluid flow in multiple sclerosis: A case-control study". Annals of Neurology 68 (2): 255–259. doi:10.1002/ana.22132. PMID 20695018.  edit
  69. ^ Damadian RV, Chu D. The possible role of cranio-cervical trauma and abnormal CSF hydrodynamics in the genesis of multiple sclerosis, 2011, [3]
  70. ^ Zamboni et al. CSF dynamics and brain volume in multiple sclerosis are associated with extracranial venous flow anomalies, 2010 [4]
  71. ^ Raymond V. Damadian and David Chu, The Possible Role of Cranio-Cervical Trauma and Abnormal CSF Hydrodynamics in the Genesis of Multiple Sclerosis [5][6][7]
  72. ^ Alcázar A1 Regidor I, Masjuan J, Salinas M, Alvarez-Cermeño JC (Apr 2000). "Axonal damage induced by cerebrospinal fluid from patients with relapsing-remitting multiple sclerosis". J Neuroimmunol 104 (1): 58–67. doi:10.1016/s0165-5728(99)00225-8. 
  73. ^ Alvarez-Cermeño JC, Cid C, Regidor I, Masjuan J, Salinas-Aracil M, Alcázar-González A (2002). "The effect of cerebrospinal fluid on neurone culture: implications in the pathogenesis of multiple sclerosis". Rev Neurol 35 (10): 994–7. 
  74. ^ Cid C1 Alvarez-Cermeño JC, Camafeita E, Salinas M, Alcázar A (Feb 2004). "Antibodies reactive to heat shock protein 90 induce oligodendrocyte precursor cell death in culture. Implications for demyelination in multiple sclerosis". FASEB J. 18 (2): 409–11. doi:10.1096/fj.03-0606fje. 
  75. ^ Tiwari-Woodruff SK, Myers LW, Bronstein JM. "Cerebrospinal fluid immunoglobulin G promotes oligodendrocyte progenitor cell migration. ;;J Neurosci Res.;; 2004 Aug 1;77(3):363-6.
  76. ^ Cristofanilli M, Cymring B, Lu A, Rosenthal H, Sadiq SA (Oct 2013). "Cerebrospinal fluid derived from progressive multiple sclerosis patients promotes neuronal and oligodendroglial differentiation of human neural precursor cells in vitro". Neuroscience 250: 614–21. doi:10.1016/j.neuroscience.2013.07.022. 
  77. ^ Cristofanilli M1, Rosenthal H1, Cymring B1, Gratch D1, Pagano B1, Xie B1, Sadiq SA2, Progressive multiple sclerosis cerebrospinal fluid induces inflammatory demyelination, axonal loss, and astrogliosis in mice, Exp Neurol. 2014; doi: 10.1016/j.expneurol.2014.07.020 PMID 25111532
  78. ^ Saeki Y, Mima T, Sakoda S, Fujimura H, Arita N, Nomura T, Kishimoto T (1992). "Transfer of multiple sclerosis into severe combined immunodeficiency mice by mononuclear cells from cerebrospinal fluid of the patients". PNAS 89: 13. 
  79. ^ Vidaurre OG et al. (Aug 2014). "Cerebrospinal fluid ceramides from patients with multiple sclerosis impair neuronal bioenergetics". Brain 137 (8): 2271–86. doi:10.1093/brain/awu139. 
  80. ^ Burgal , Mathur (Jul 2014). "Molecular Shots". Ann Neurosci 21 (3): 123. doi:10.5214/ans.0972.7531.210311. 
  81. ^ Srivastava R. et al. (Jul 2012). "Potassium channel KIR4.1 as an immune target in multiple sclerosis". N Engl J Med. 367 (2): 115–23. doi:10.1056/NEJMoa1110740. PMID 22784115. 
  82. ^ Raphael Schneider, Autoantibodies to Potassium Channel KIR4.1 in Multiple Sclerosis, doi: 10.3389/fneur.2013.00125, PMID 24032025
  83. ^ A. Alcázar et al. Axonal damage induced by cerebrospinal fluid from patients with relapsing-remitting multiple sclerosis, Journal of Neuroimmunology, Volume 104, Issue 1, 3 April 2000, Pages 58–67, doi:10.1016/S0165-5728(99)00225-8
  84. ^ Peferoen, L., D. Vogel, Marjolein Breur, Wouter Gerritsen, C. Dijkstra, and S. Amor. "Do stressed oligodendrocytes trigger microglia activation in pre-active MS lesions?." In GLIA, vol. 61, pp. S164-S164. 111 RIVER ST, HOBOKEN 07030-5774, NJ USA: WILEY-BLACKWELL, 2013.
  85. ^ van Horssen Jack et al. "Clusters of activated microglia in normal-appearing white matter show signs of innate immune activation". Journal of Neuroinflammation 2012 (9): 156. 
  86. ^ Mainero C et al. "A gradient in cortical pathology in multiple sclerosis by in vivo quantitative 7 T imaging. Brain. 2015 Feb 12. doi:10.1093/brain/awv011 PMID 25681411
  87. ^ Wootla B, Eriguchi M, Rodriguez M. Is multiple sclerosis an autoimmune disease? Autoimmune Dis. 2012;2012:969657. doi: 10.1155/2012/969657. Epub 2012 May 16.
  88. ^ Dorothea Buck 1 and Bernhard Hemmer, Biomarkers of treatment response in multiple sclerosis, February 2014, Vol. 14, No. 2 , Pages 165-172 (doi:10.1586/14737175.2014.874289) [8]
  89. ^ Manuel Comabella, Xavier Montalban, Body fluid biomarkers in multiple sclerosis, The Lancet Neurology, Volume 13, Issue 1, Pages 113 - 126, January 2014 doi:10.1016/S1474-4422(13)70233-3
  90. ^ Rajneesh Srivastava et al. Potassium Channel KIR4.1 as an Immune Target in Multiple Sclerosis, New England Journal of Medicine, 2012; 367:115-123July 12, 2012DOI: 10.1056/NEJMoa1110740
  91. ^ Serafeim Katsavos and Maria Anagnostouli, Biomarkers in Multiple Sclerosis: An Up-to-Date Overview, Multiple Sclerosis International Volume 2013 (2013), Article ID 340508, 20 pages [9][10]
  92. ^ Hammack BN et al. Proteomic analysis of multiple sclerosis cerebrospinal fluid. Mult Scler. 2004 Jun;10(3):245-60. PMID 15222687
  93. ^ Haufschild T, Shaw SG, Kesselring J, Flammer J. Increased endothelin-1 plasma levels in patients with multiple sclerosis. J Neuroophthalmol. 2001 Mar;21(1):37-8.
  94. ^ Kanabrocki EL, Ryan MD, Hermida RC et al. (2008). "Uric acid and renal function in multiple sclerosis". Clin Ter 159 (1): 35–40. PMID 18399261. 
  95. ^ Yang L, Anderson DE, Kuchroo J, Hafler DA; Anderson; Kuchroo; Hafler (2008). "Lack of TIM-3 Immunoregulation in Multiple Sclerosis". Journal of Immunology 180 (7): 4409–4414. doi:10.4049/jimmunol.180.7.4409. PMID 18354161. 
  96. ^ Malmeström C, Lycke J, Haghighi S, Andersen O, Carlsson L, Wadenvik H, Olsson B.; Lycke; Haghighi; Andersen; Carlsson; Wadenvik; Olsson (2008). "Relapses in multiple sclerosis are associated with increased CD8(+) T-cell mediated cytotoxicity in CSF". J Neuroimmunol. 196 (Apr.5): 35–40. doi:10.1016/j.jneuroim.2008.03.001. PMID 18396337. 
  97. ^ Satoh J. (2008). "Molecular biomarkers for prediction of multiple sclerosis relapse" [Molecular biomarkers for prediction of multiple sclerosis relapse]. Nippon Rinsho (in Japanese) 66 (6): 1103–11. PMID 18540355. 
  98. ^ Sheremata WA, Jy W, Horstman LL, Ahn YS, Alexander JS, Minagar A.; Jy; Horstman; Ahn; Alexander; Minagar (2008). "Evidence of platelet activation in multiple sclerosis". J Neuroinflammation 5 (1): 27. doi:10.1186/1742-2094-5-27. PMC 2474601. PMID 18588683. 
  99. ^ Astier AL (2008). "T-cell regulation by CD46 and its relevance in multiple sclerosis". Immunology 124 (2): 149–54. doi:10.1111/j.1365-2567.2008.02821.x. PMC 2566619. PMID 18384356. 
  100. ^ Kanabrocki EL, Ryan MD, Lathers D, Achille N, Young MR, Cauteren JV, Foley S, Johnson MC, Friedman NC, Siegel G, Nemchausky BA.; Ryan; Lathers; Achille; Young; Cauteren; Foley; Johnson; Friedman; Siegel; Nemchausky (2007). "Circadian distribution of serum cytokines in multiple sclerosis". Clin. Ter. 158 (2): 157–62. PMID 17566518. 
  101. ^ Rentzos M, Nikolaou C, Rombos A, Evangelopoulos ME, Kararizou E, Koutsis G, Zoga M, Dimitrakopoulos A, Tsoutsou A, Sfangos C.; Nikolaou; Rombos; Evangelopoulos; Kararizou; Koutsis; Zoga; Dimitrakopoulos; Tsoutsou; Sfangos (2008). "Effect of treatment with methylprednisolone on the serum levels of IL-12, IL-10 and CCL2 chemokine in patients with multiple sclerosis in relapse". Clinical neurology and neurosurgery 110 (10): 992–6. doi:10.1016/j.clineuro.2008.06.005. PMID 18657352. 
  102. ^ Scarisbrick IA, Linbo R, Vandell AG, Keegan M, Blaber SI, Blaber M, Sneve D, Lucchinetti CF, Rodriguez M, Diamandis EP.; Linbo; Vandell; Keegan; Blaber; Blaber; Sneve; Lucchinetti; Rodriguez; Diamandis (2008). "Kallikreins are associated with secondary progressive multiple sclerosis and promote neurodegeneration". Biological chemistry 389 (6): 739–45. doi:10.1515/BC.2008.085. PMC 2580060. PMID 18627300. 
  103. ^ New Control System Of The Body Discovered - Important Modulator Of Immune Cell Entry Into The Brain - Perhaps New Target For The Therapy, Dr. Ulf Schulze-Topphoff, Prof. Orhan Aktas, and Professor Frauke Zipp (Cecilie Vogt-Clinic, Charité - Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch and NeuroCure Research Center) [11]
  104. ^ Schulze-Topphoff U, Prat A, Prozorovski T et al. (July 2009). "Activation of kinin receptor B1 limits encephalitogenic T lymphocyte recruitment to the central nervous system". Nat. Med. 15 (7): 788–93. doi:10.1038/nm.1980. PMID 19561616. 
  105. ^ Rinta S, Kuusisto H, Raunio M et al. (October 2008). "Apoptosis-related molecules in blood in multiple sclerosis". J Neuroimmunol. 205 (1–2): 135–41. doi:10.1016/j.jneuroim.2008.09.002. PMID 18963025. 
  106. ^ Kuenz B, Lutterotti A, Ehling R et al. (2008). Zimmer, Jacques, ed. "Cerebrospinal Fluid B Cells Correlate with Early Brain Inflammation in Multiple Sclerosis". PLoS ONE 3 (7): e2559. Bibcode:2008PLoSO...3.2559K. doi:10.1371/journal.pone.0002559. PMC 2438478. PMID 18596942.  open access publication - free to read
  107. ^ Chiasserini D, Di Filippo M, Candeliere A, Susta F, Orvietani PL, Calabresi P, Binaglia L, Sarchielli P.; Di Filippo; Candeliere; Susta; Orvietani; Calabresi; Binaglia; Sarchielli (2008). "CSF proteome analysis in multiple sclerosis patients by two-dimensional electrophoresis". European Journal of Neurology 15 (9): 998–1001. doi:10.1111/j.1468-1331.2008.02239.x. PMID 18637954. 
  108. ^ Frisullo G, Nociti V, Iorio R et al. (October 2008). "The persistency of high levels of pSTAT3 expression in circulating CD4+ T cells from CIS patients favors the early conversion to clinically defined multiple sclerosis". J Neuroimmunol. 205 (1–2): 126–34. doi:10.1016/j.jneuroim.2008.09.003. PMID 18926576. 
  109. ^ Proceedings of the National Academy of sciences, complementary information [12]
  110. ^ Quintana FJ, Farez MF, Viglietta V et al. (December 2008). "Antigen microarrays identify unique serum autoantibody signatures in clinical and pathologic subtypes of multiple sclerosis". Proc. Natl. Acad. Sci. U.S.A. 105 (48): 18889–94. Bibcode:2008PNAS..10518889Q. doi:10.1073/pnas.0806310105. PMC 2596207. PMID 19028871. 
  111. ^ Villar LM, Masterman T, Casanova B et al. (June 2009). "CSF oligoclonal band patterns reveal disease heterogeneity in multiple sclerosis". J. Neuroimmunol. 211 (1–2): 101–4. doi:10.1016/j.jneuroim.2009.03.003. PMID 19443047. 
  112. ^ a b Rajneesh Srivastava, M.Sc et al. "Potassium Channel KIR4.1 as an Immune Target in Multiple Sclerosis", New England Journal of medicine, N Engl J Med 2012; 367:115-123 July 12, 2012 [13]
  113. ^ Linda Ottoboni, Brendan T. Keenan, Pablo Tamayo, Manik Kuchroo, Jill P. Mesirov, Guy J. Buckle, Samia J. Khoury, David A. Hafler, Howard L. Weiner, and Philip L. De Jager. An RNA Profile Identifies Two Subsets of Multiple Sclerosis Patients Differing in Disease Activity. Sci Transl Med, 26 September 2012 doi:10.1126/scitranslmed.3004186
  114. ^ Grant P .Parnell et al. The autoimmune disease-associated transcription factors EOMES and TBX21 are dysregulated in multiple sclerosis and define a molecular subtype of disease, http://dx.doi.org/10.1016/j.clim.2014.01.003, [14]
  115. ^ Plumb J, McQuaid S, Mirakhur M, Kirk J; McQuaid; Mirakhur; Kirk (April 2002). "Abnormal endothelial tight junctions in active lesions and normal-appearing white matter in multiple sclerosis". Brain Pathol. 12 (2): 154–69. doi:10.1111/j.1750-3639.2002.tb00430.x. PMID 11958369. 
  116. ^ Mancini, M, Cerebral circulation time in the evaluation of neurological diseases [15]
  117. ^ Meng Law et al. Microvascular Abnormality in Relapsing-Remitting Multiple Sclerosis: Perfusion MR Imaging Findings in Normal-appearing White Matter [16]
  118. ^ Orbach R, Gurevich M, Achiron A. Interleukin-12p40 in the spinal fluid as a biomarker for clinically isolated syndrome, Mult Scler. 2013 May 30
  119. ^ Sarchielli P, Greco L, Floridi A, Floridi A, Gallai V.; Greco; Floridi; Floridi; Gallai (2003). "Excitatory amino acids and multiple sclerosis: evidence from cerebrospinal fluid". Arch. Immunol. 60 (8): 1082–8. doi:10.1001/archneur.60.8.1082. PMID 12925363. 
  120. ^ Frigo M1 Cogo MG, Fusco ML, Gardinetti M, Frigeni B (2012). "Glutamate and multiple sclerosis". Curr Med Chem. 19 (9): 1295–9. doi:10.2174/092986712799462559. PMID 22304707. 
  121. ^ David Pitt el al. Glutamate uptake by oligodendrocytes. Neurology 2003; 61(8): 1113-1120 doi:10.1212/01.WNL.0000090564.88719.37
  122. ^ Stoop MP, Dekker LJ, Titulaer MK et al. (2008). "Multiple sclerosis-related proteins identified in cerebrospinal fluid by advanced mass spectrometry". Proteomics 8 (8): 1576–85. doi:10.1002/pmic.200700446. PMID 18351689. 
  123. ^ Sarchielli P, Di Filippo M, Ercolani MV et al. (April 2008). "Fibroblast growth factor-2 levels are elevated in the cerebrospinal fluid of multiple sclerosis patients". Neurosci Lett. 435 (3): 223–8. doi:10.1016/j.neulet.2008.02.040. PMID 18353554. 
  124. ^ Huttner HB, Schellinger PD, Struffert T et al. (July 2009). "MRI criteria in MS patients with negative and positive oligoclonal bands: equal fulfillment of Barkhof's criteria but different lesion patterns". J. Neurol. 256 (7): 1121–5. doi:10.1007/s00415-009-5081-y. PMID 19252765. 
  125. ^ Villar LM, Espiño M, Costa-Frossard L, Muriel A, Jiménez J, Alvarez-Cermeño JC, "High levels of cerebrospinal fluid free kappa chains predict conversion to multiple sclerosis, doi:10.1016/j.cca.2012.07.007 PMID 22814197
  126. ^ Sotelo J, Martínez-Palomo A, Ordoñez G, Pineda B.; Martínez-Palomo; Ordoñez; Pineda (2008). "Varicella-zoster virus in cerebrospinal fluid at relapses of multiple sclerosis". Annals of Neurology 63 (3): 303–11. doi:10.1002/ana.21316. PMID 18306233. 
  127. ^ von Büdingen HC, Harrer MD, Kuenzle S, Meier M, Goebels N; Harrer; Kuenzle; Meier; Goebels (July 2008). "Clonally expanded plasma cells in the cerebrospinal fluid of MS patients produce myelin-specific antibodies". Eur Journal of Immunology 38 (7): 2014–23. doi:10.1002/eji.200737784. PMID 18521957. 
  128. ^ Vincze O, Oláh J, Zádori D, Klivényi P, Vécsei L, Ovádi J; Oláh; Zádori; Klivényi; Vécsei; Ovádi (May 2011). "A new myelin protein, TPPP/p25, reduced in demyelinated lesions is enriched in cerebrospinal fluid of multiple sclerosis". Biochem. Biophys. Res. Commun. 409 (1): 137–41. doi:10.1016/j.bbrc.2011.04.130. PMID 21565174. 
  129. ^ Han S1, Lin YC, Wu T, Salgado AD, Mexhitaj I, Wuest SC, Romm E, Ohayon J, Goldbach-Mansky R, Vanderver A, Marques A, Toro C, Williamson P, Cortese I, Bielekova B. Comprehensive immunophenotyping of cerebrospinal fluid cells in patients with neuroimmunological diseases, J Immunol. 2014 Mar 15;192(6):2551-63. doi: 10.4049/jimmunol.1302884. Epub 2014 Feb 7, PMID 24510966
  130. ^ Liguori M1, Qualtieri A2, Tortorella C3, Direnzo V3, Bagalà A2, Mastrapasqua M3, Spadafora P2, Trojano M3. Proteomic profiling in multiple sclerosis clinical courses reveals potential biomarkers of neurodegeneration, PLoS One. 2014 Aug 6;9(8):e103984. doi: 10.1371/journal.pone.0103984. eCollection 2014. PMID 25098164 open access publication - free to read
  131. ^ Burman et al. The cerebrospinal fluid cytokine signature of multiple sclerosis: A homogenous response that does not conform to the Th1/Th2/Th17 convention. J Neuroimmunol. 2014 Oct 18;277(1-2):153-159. doi: 10.1016/j.jneuroim.2014.10.005. PMID 25457841
  132. ^ Nellie A. Martin andZsolt Illes, Differentially expressed microRNA in multiple sclerosis: A window into pathogenesis? DOI: 10.1111/cen3.12131 [17]
  133. ^ Cozzone, Zaaraoui and Ranjeva, "Distribution of Brain Sodium Accumulation Correlates with Disability in Multiple Sclerosis–A Cross-Sectional 23Na MR Imaging Study." Radiological Society of North America
  134. ^ Beggs CB, Shepherd SJ, Dwyer MG, Polak P, Magnano C, Carl E, Poloni GU, Weinstock-Guttman B, Zivadinov R. Sensitivity and specificity of SWI venography for detection of cerebral venous alterations in multiple sclerosis, Neurol Res. 2012 Oct;34(8):793-801. doi: 10.1179/1743132812Y.0000000048, PMID 22709857
  135. ^ Laule C et al. Evolution of focal and diffuse magnetisation transfer abnormalities in multiple sclerosis, J Neurol. 2003 Aug;250(8):924-31.
  136. ^ Satoh J. (2008). "Molecular biomarkers for prediction of multiple sclerosis relapse" [Molecular biomarkers for prediction of multiple sclerosis relapse]. Nippon Rinsho (in Japanese) 66 (6): 1103–11. PMID 18540355. 
  137. ^ García-Barragán N, Villar LM, Espiño M, Sádaba MC, González-Porqué P, Alvarez-Cermeño JC; Villar; Espiño; Sádaba; González-Porqué; Alvarez-Cermeño (March 2009). "Multiple sclerosis patients with anti-lipid oligoclonal IgM show early favourable response to immunomodulatory treatment". Eur. J. Neurol. 16 (3): 380–5. doi:10.1111/j.1468-1331.2008.02504.x. PMID 19175382. 
  138. ^ Hagman S, Raunio M, Rossi M, Dastidar P, Elovaara I; Raunio; Rossi; Dastidar; Elovaara (May 2011). "Disease-associated inflammatory biomarker profiles in blood in different subtypes of multiple sclerosis: Prospective clinical and MRI follow-up study". Journal of Neuroimmunology 234 (1–2): 141–7. doi:10.1016/j.jneuroim.2011.02.009. PMID 21397339. 
  139. ^ Kuerten S et al. Identification of a B cell-dependent subpopulation of multiple sclerosis by measurements of brain-reactive B cells in the blood. Clin Immunol. 2014 Mar 5. pii: S1521-6616(14)00051-5. doi: 10.1016/j.clim.2014.02.014, PMID 24607792

External links[edit]