Pentagonal icositetrahedron

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Pentagonal icositetrahedron
Pentagonal icositetrahedron, anticlockwise twistPentagonal icositetrahedron
Click ccw or cw for spinning versions.
Type Catalan
Coxeter diagram CDel node fh.pngCDel 4.pngCDel node fh.pngCDel 3.pngCDel node fh.png
Face polygon DU12 facets.png
irregular pentagon
Faces 24
Edges 60
Vertices 38 = 6 + 8 + 24
Face configuration V3.3.3.3.4
Dihedral angle 136° 18' 33'
Symmetry group O, ½BC3, [4,3]+, 432
Dual polyhedron snub cube
Properties convex, face-transitive, chiral
Pentagonal icositetrahedron
Net

In geometry, a pentagonal icositetrahedron is a Catalan solid which is the dual of the snub cube. It has two distinct forms, which are mirror images (or "enantiomorphs") of each other.

If it has unit edge length, its surface area is \scriptstyle{3}\sqrt{\tfrac{22(5t-1)}{4t-3}} \scriptstyle{\approx 19.29994} and its volume is \sqrt{\tfrac{11(t-4)}{2(20t-37)}} \scriptstyle{\approx 7.4474}. Here t is the tribonacci constant (see snub cube).

Related polyhedra and tilings[edit]

This polyhedron is topologically related as a part of sequence of polyhedra and tilings of pentagons with face configurations (V3.3.3.3.n). (The sequence progresses into tilings the hyperbolic plane to any n.) These face-transitive figures have (n32) rotational symmetry.

Dimensional family of snub polyhedra and tilings: 3.3.3.3.n
Symmetry
n32
[n,3]+
Spherical Euclidean Compact hyperbolic Paracompact
232
[2,3]+
D3
332
[3,3]+
T
432
[4,3]+
O
532
[5,3]+
I
632
[6,3]+
P6
732
[7,3]+
832
[8,3]+...
∞32
[∞,3]+
Snub
figure
Spherical trigonal antiprism.png
3.3.3.3.2
Spherical snub tetrahedron.png
3.3.3.3.3
Spherical snub cube.png
3.3.3.3.4
Spherical snub dodecahedron.png
3.3.3.3.5
Uniform tiling 63-snub.png
3.3.3.3.6
Uniform tiling 73-snub.png
3.3.3.3.7
Uniform tiling 83-snub.png
3.3.3.3.8
Uniform tiling i32-snub.png
3.3.3.3.∞
Coxeter
Schläfli
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 3.pngCDel node h.png
sr{2,3}
CDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png
sr{3,3}
CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
sr{4,3}
CDel node h.pngCDel 5.pngCDel node h.pngCDel 3.pngCDel node h.png
sr{5,3}
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
sr{6,3}
CDel node h.pngCDel 7.pngCDel node h.pngCDel 3.pngCDel node h.png
sr{7,3}
CDel node h.pngCDel 8.pngCDel node h.pngCDel 3.pngCDel node h.png
sr{8,3}
CDel node h.pngCDel infin.pngCDel node h.pngCDel 3.pngCDel node h.png
sr{∞,3}
Snub
dual
figure
Hexahedron.svg
V3.3.3.3.2
POV-Ray-Dodecahedron.svg
V3.3.3.3.3
Pentagonalicositetrahedroncw.jpg
V3.3.3.3.4
Pentagonalhexecontahedroncw.jpg
V3.3.3.3.5
Tiling Dual Semiregular V3-3-3-3-6 Floret Pentagonal.svg
V3.3.3.3.6
Ord7 3 floret penta til.png
V3.3.3.3.7
V3.3.3.3.8 Order-3-infinite floret pentagonal tiling.png
V3.3.3.3.∞
Coxeter CDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node fh.pngCDel 3.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node fh.pngCDel 4.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node fh.pngCDel 5.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node fh.pngCDel 6.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node fh.pngCDel 7.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node fh.pngCDel 8.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node fh.pngCDel infin.pngCDel node fh.pngCDel 3.pngCDel node fh.png

The pentagonal icositetrahedron is second in a series of dual snub polyhedra and tilings with face configuration V3.3.4.3.n.

Dimensional family of snub polyhedra and tilings: 3.3.4.3.n
Symmetry
4n2
[n,4]+
Spherical Euclidean Compact hyperbolic Paracompact
242
[2,4]+
342
[3,4]+
442
[4,4]+
542
[5,4]+
642
[6,4]+
742
[7,4]+
842
[8,4]+...
∞42
[∞,4]+
Snub
figure
Spherical square antiprism.png
3.3.4.3.2
Spherical snub cube.png
3.3.4.3.3
Uniform tiling 44-snub.png
3.3.4.3.4
Uniform tiling 54-snub.png
3.3.4.3.5
Uniform tiling 64-snub.png
3.3.4.3.6
Uniform tiling 74-snub.png
3.3.4.3.7
Uniform tiling 84-snub.png
3.3.4.3.8
Uniform tiling i42-snub.png
3.3.4.3.∞
Coxeter
Schläfli
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node h.png
sr{2,4}
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h.png
sr{3,4}
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
sr{4,4}
CDel node h.pngCDel 5.pngCDel node h.pngCDel 4.pngCDel node h.png
sr{5,4}
CDel node h.pngCDel 6.pngCDel node h.pngCDel 4.pngCDel node h.png
sr{6,4}
CDel node h.pngCDel 7.pngCDel node h.pngCDel 4.pngCDel node h.png
sr{7,4}
CDel node h.pngCDel 8.pngCDel node h.pngCDel 4.pngCDel node h.png
sr{8,4}
CDel node h.pngCDel infin.pngCDel node h.pngCDel 4.pngCDel node h.png
sr{∞,4}
Snub
dual
figure
Tetragonal trapezohedron.png
V3.3.4.3.2
Pentagonalicositetrahedronccw.jpg
V3.3.4.3.3
Tiling Dual Semiregular V3-3-4-3-4 Cairo Pentagonal.svg
V3.3.4.3.4
Order-5-4 floret pentagonal tiling.png
V3.3.4.3.5
V3.3.4.3.6 V3.3.4.3.7 V3.3.4.3.8 V3.3.4.3.∞
Coxeter CDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 4.pngCDel node fh.png CDel node fh.pngCDel 3.pngCDel node fh.pngCDel 4.pngCDel node fh.png CDel node fh.pngCDel 4.pngCDel node fh.pngCDel 4.pngCDel node fh.png CDel node fh.pngCDel 5.pngCDel node fh.pngCDel 4.pngCDel node fh.png CDel node fh.pngCDel 6.pngCDel node fh.pngCDel 4.pngCDel node fh.png CDel node fh.pngCDel 7.pngCDel node fh.pngCDel 4.pngCDel node fh.png CDel node fh.pngCDel 8.pngCDel node fh.pngCDel 4.pngCDel node fh.png CDel node fh.pngCDel infin.pngCDel node fh.pngCDel 4.pngCDel node fh.png

The pentagonal icositetrahedron is one of a family of duals to the uniform polyhedra related to the cube and regular octahedron.

Uniform octahedral polyhedra
Symmetry: [4,3], (*432) [4,3]+
(432)
[1+,4,3] = [3,3]
(*332)
[3+,4]
(3*2)
{4,3} t{4,3} r{4,3}
r{31,1}
t{3,4}
t{31,1}
{3,4}
{31,1}
rr{4,3}
s2{3,4}
tr{4,3} sr{4,3} h{4,3}
{3,3}
h2{4,3}
t{3,3}
s{3,4}
s{31,1}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
= CDel nodes 11.pngCDel split2.pngCDel node.png
CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
= CDel nodes 11.pngCDel split2.pngCDel node 1.png
CDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
= CDel nodes.pngCDel split2.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png =
CDel nodes 10ru.pngCDel split2.pngCDel node.png or CDel nodes 01rd.pngCDel split2.pngCDel node.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png =
CDel nodes 10ru.pngCDel split2.pngCDel node 1.png or CDel nodes 01rd.pngCDel split2.pngCDel node 1.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h0.png =
CDel node h.pngCDel split1.pngCDel nodes hh.png
Uniform polyhedron-43-t0.svg Uniform polyhedron-43-t01.svg Uniform polyhedron-43-t1.svg
Uniform polyhedron-33-t02.png
Uniform polyhedron-43-t12.svg
Uniform polyhedron-33-t012.png
Uniform polyhedron-43-t2.svg
Uniform polyhedron-33-t1.png
Uniform polyhedron-43-t02.png
Rhombicuboctahedron uniform edge coloring.png
Uniform polyhedron-43-t012.png Uniform polyhedron-43-s012.png Uniform polyhedron-33-t0.pngUniform polyhedron-33-t2.png Uniform polyhedron-33-t01.pngUniform polyhedron-33-t12.png Uniform polyhedron-43-h01.svg
Uniform polyhedron-33-s012.png
Duals to uniform polyhedra
V43 V3.82 V(3.4)2 V4.62 V34 V3.43 V4.6.8 V34.4 V33 V3.62 V35
CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 4.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node fh.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node fh.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 3.pngCDel node fh.pngCDel 4.pngCDel node.png
CDel node f1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 4.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node f1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 3.pngCDel node fh.pngCDel 3.pngCDel node fh.png
Octahedron.svg Triakisoctahedron.jpg Rhombicdodecahedron.jpg Tetrakishexahedron.jpg Hexahedron.svg Deltoidalicositetrahedron.jpg Disdyakisdodecahedron.jpg Pentagonalicositetrahedronccw.jpg Tetrahedron.svg Triakistetrahedron.jpg POV-Ray-Dodecahedron.svg

References[edit]

External links[edit]