Phonograph cylinder

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Edison wax cylinder phonograph ca. 1899

Phonograph cylinders are the earliest commercial medium for recording and reproducing sound. Commonly known simply as "records" in their era of greatest popularity (c. 1888–1915), these cylinder-shaped objects had an audio recording engraved on the outside surface which could be reproduced when the cylinder was played on a mechanical phonograph. The competing disc-shaped gramophone record system triumphed in the market place to become the dominant commercial audio medium in the 1910s, and commercial mass production of phonograph cylinders ended in 1929.

Early development[edit]

Two Edison cylinder records (on either end) and their cardboard storage cartons (center)
Brown wax cylinders showing various shades (and mold damage)
Paper slip from 1903 cylinder
Imprint of backside from the 1903 paper slip
Portion of the label on the outside of a Columbia Records cylinder package, before 1901. Note the title of the recording is hand written on the label.
Edison Gold Moulded Cylinder made from black wax, ca. 1904. The term 'gold' was a reference to the metal plated onto the master wax cylinder as the first part in the process of manufacturing the mould.
Amberol cylinder package lid
Rim of Edison "Blue Amberol" cylinder

The phonograph was invented by Thomas Edison on July 18, 1877. His first test used tin foil wrapped around a hand-cranked cylinder.[1] Tin foil was not a practical recording medium for everyday use and commercial production. Within a few years Edison developed wax cylinders licensed by Charles Sumner Tainter, Alexander Graham Bell, and Chichester Bell, as the American Graphophone Co. – Later absorbed by the Columbia phonograph Co.

By the late 1880s wax cylinders were mass marketed. These had sound recordings in the grooves on the outside of hollow cylinders of wax. These cylinders could easily be removed and replaced on the mandrel of the machine which played them. Early cylinder records would commonly wear out after they were played a few dozen times. The buyer could then use a mechanism which left their surface shaved smooth so new recordings could be made on them. In 1890 Charles Tainter patented the use of hard carnauba wax as a replacement for the common mixture of paraffin and beeswax used on phonograph cylinders.

Early cylinder machines of the late 1880s and the 1890s were often sold with recording attachments. The ability to record as well as play back sound was an advantage to cylinder phonographs over the competition from cheaper disc record phonographs which began to be mass marketed at the end of the 1890s, as the disc system machines could be used only to play back pre-recorded sound.

In the earliest stages of phonograph manufacturing various competing incompatible types of cylinder recordings were made. A standard system was decided upon by Edison Records, Columbia Phonograph, and other companies in the late 1880s. The standard cylinders were about 4 inches (10 cm) long, 2¼ inches in diameter, and played about two minutes of music or other sound.

Over the years the type of wax used in cylinders was improved and hardened so that cylinders could be played over 100 times. In 1902 Edison Records launched a line of improved hard wax cylinders marketed as Edison Gold Moulded Record. The major development of this line of cylinders is that Edison had developed a process that allowed a mould to be made from a master cylinder which then permitted the production of several hundred cylinders to be made from the mould.[2] The reference to 'gold' was that the master cylinder was coated with gold as part of the production process.

Originally all cylinders sold had to be recorded live on the softer brown wax which wore out in as few as twenty playings. Later cylinders were reproduced either mechanically or by linking phonographs together with rubber tubes.[3] Although not satisfactory, the result was just about good enough to be sold.

Commercial packaging[edit]

Cylinders were sold in cardboard tubes, with cardboard lids at each end. These containers helped to protect the recordings. These containers and the shape of the cylinders (together with the "tinny" sound of early records compared to live music) prompted bandleader John Philip Sousa to deride the records as canned music (though that did not stop him recording on cylinders).

In the early days, record companies usually had a generic printed label on the outside of the cylinder package, with no indication of the identity of the individual recording inside. Small paper inserts with the recording information were placed inside the package with the cylinders. At first this was hand written or typed on each slip, but printed versions became more common once cylinders of certain songs were sold in large enough quantities to make this economically practical. The cylinder itself usually had a spoken announcement of the title of the recording together with the artist(s) and often the record company itself. Note that in the example in the image below, from Edison Records, 1902, the consumer is invited to cut out the circle with printed information. This paper circle could then be pasted either to the lid of the cylinder container, or (as this example prompts) to a spindle for this cylinder in specially built cabinets for holding cylinder records which were marketed by record companies. Only a minority of cylinder record customers purchased such cabinets, however. Slightly later, the record number was stamped on the top lid, then a bit later the title and artist of the recording were printed onto labels on the lid. Shortly after the start of the 20th century, an abbreviated version of this information (together with the name of the record company) was printed or impressed onto one edge of the cylinder itself.

Hard plastic cylinders[edit]

1910 Indestructible Record of Auld Lang Syne, sung by Frank C. Stanley.

Problems playing this file? See media help.

In 1900, Thomas B Lambert was granted a patent that described a process for mass-producing cylinders made from celluloid, an early hard plastic (though in fact Henri Lioret of France was producing celluloid cylinders as early as 1893).[4] That same year, the Lambert Company of Chicago began mass marketing cylinder records made of the new material, that would not break if dropped and could be played thousands of times without wearing out, though the choice of the bright pink color of early cylinders may have been a marketing error. The color was changed to black in 1903[5] though brown and blue cylinders were also produced. The cylinders were colored because the colored dye layer reduced the surface noise. The hard inflexible material could not be shaved and recorded over unlike wax cylinders, but had the advantage of being a nearly permanent record.

Such "Indestructible" style cylinders are arguably the most durable form of sound recording produced in the entire era of analog audio before the introduction of digital audio; they can withstand a greater number of playbacks before wearing out than later media such as the vinyl record or audio tape. The celuloid material shrinks with the passing years. A typical lambert cylinder will have shrunk by approximately 3 millimetres in length in the 100 years or so since their manufacture (the actual amount is very dependent on storage conditions). Thus the grooves will no longer be 100 per inch and the cylinder will skip if played. The diameter will also have shrunk and many cylinders will no longer fit on a phonograph mandrel unless (very carefully) reamed to fit. Such cylinders can still be played quite satisfactorily on suitable modern equipment. The Lambert company was put out of business in 1906 due to repeated actions from Edison for patent infingement (which Lambert had not actually committed - it was the cost of defending the actions that eventually sank Lambert).

This superior technology was licensed by a few companies including the Indestructable Record Company in 1906 and Columbia Phonograph Company in 1908. The Edison-Bell company in Europe had separately licensed the technology and were able to market Edison's titles in both wax (popular series) and celluloid (indestructible series). Lambert was able to license the process because the patent was not owned by the now defunct Lambert Company, but by Lambert himself.

Edison had introduced wax cylinders that played for nominally 4 minutes (instead of the usual 2) in 1909 under the Amberol brand. These were made from a harder (and more easily breakable) form of wax to withstand the smaller stylus used to play them. The longer playing time was achieved by shrinking the groove size and spacing them twice as close together. In 1912, the Edison company eventually acquired Lambert's patents to the celloloid technology, and almost immediately started production under a variation of their existing Amberol brand as Edison Blue Amberol Records.[6] These new celluloid recordings were given a core made from plaster of paris. The celluloid material itself was blue in color, but purple was introduced in 1919, "... for more sophisticated selections". The use of the plaster core provided resistance to the shrinkage of the celluloid, but the playing surface is still liable to split if stored in less than ideal conditions. The plaster core itself can deteriorate in conditions that are too damp or too dry. Nevertheless, most Blue Amberol cylinders are, today, quite playable on antique phonographs or modern equipment alike (though the plaster core may need some reaming).

Edison made several designs of phonographs both with internal and external horns for playing these improved cylinder records. The internally horned models were called Amberolas. Edison also marketed its "Fireside" model phonograph with a gearshift and a 'model K' reproducer with two styli that allowed it to play both 2-minute and 4-minute cylinders.[7] Conversion kits were also produced for some of the later model 2 minute phonographs adding a gear change and a second 'model H' reproducer. Thes kits were also shipped with a set of 12 (wax) Amberol cylinders in distinctive orange boxes. The purchaser had no choice as to the titles.

Disc records[edit]

In the era before World War I, phonograph cylinders and disc records competed with each other for public favor.

The audio fidelity of a sound groove is debatably better if it is engraved on a cylinder, due to much improved linear tracking, and this was not resolved until the advent of RIAA standards in the early 1940s, by which time it was a moot point, as cylinder production stopped with Edison's last efforts in October 1929.

Advantages of cylinders[edit]

The cylinder system had certain advantages. As noted, wax cylinders could be used for home recordings, and "indestructible" types could be played over and over many more times than the disc. Cylinders usually rotated twice as fast as contemporary discs, but the linear velocity was comparable to the innermost grooves of the disc. In theory, this would provide generally poorer audio fidelity. Furthermore, since constant angular velocity translates into constant linear velocity (the radius of the helical track is constant), cylinders were also free from inner groove problems suffered by disc recordings. Around 1900, cylinders were, on average, indeed of notably higher audio quality than contemporary discs, but as disc makers improved their technology by 1910 the fidelity differences between better discs and cylinders became minimal.

Cylinder phonographs generally used a worm gear to move the stylus in synchronization with the grooves of the recording, whereas most disc machines relied on the grooves to pull the stylus along. This resulted in cylinder records played a number of times having less degradation than discs, but this added mechanism made cylinder machines more expensive.

Advantages of discs[edit]

Both the disc records, and the machines to play them, were cheaper to mass-produce than the products of the cylinder system. Disc records were also easier and cheaper to store in bulk, as they could be stacked, or when in paper sleeves put in rows on shelves like books—packed together more densely than cylinder recordings.

Many cylinder phonographs used a belt to turn the mandrel; slight slippage of this belt could make the mandrel not turn evenly, thus resulting in pitch fluctuations. Disc phonographs using a direct system of gears turned more evenly; the heavy metal turntable of disc machines acted as a flywheel, helping to minimize speed wobble.

In 1908 Columbia Records introduced mass production of disc records with recordings pressed on both sides, first manufactured using shellac and later vinyl, which soon became the industry standard. Patrons of disc records could now get two recordings for less than the price of one on cylinder.

The disc companies had superior advertising and promotion, most notably the Victor Talking Machine Company in the United States and the Gramophone Company/HMV in the Commonwealth. Great singers like Enrico Caruso were hired to record exclusively, helping put the idea in the public mind that that company's product was superior. Edison tried to get into the disc market with hill-and-dale discs, Edison Disc Records.

Demise of cylinders[edit]

Disc records and cylinders

Cylinder recordings continued to compete with the growing disc record market into the 1910s, when discs won the commercial battle. In that decade, Columbia (which had been making both discs and cylinders) switched exclusively to discs, and Edison started marketing its own disc records. However Edison continued to sell new cylinder records to consumers with cylinder phonograph machines through 1929. The latest of the new cylinders were simply "dubs" of disc records, and were therefore of lower fidelity than the disc originals.

Cylinder records are once again being manufactured, out of modern long-lasting materials. The Vulcan Cylinder Record Company of Sheffield, England currently boasts nearly two dozen titles in both 2 and 4 minute sizes, mostly dubs from original material but also some recent acoustic recordings.[8] Also, out of Baldwin, New York, the Wizard record company is making similar cylinders.[9]

Later application of phonograph cylinder technology[edit]

Cylinder on Dictaphone dictation machine. The recording head moved R-L. The black lines are shiny gaps between tracks. Wax cylinders could record 1200-1500 words. They could be reused 100-120 times by putting them in a machine that erased them by 'shaving' off the surface.

Cylinder phonograph technology continued to be used for Dictaphone and Ediphone recordings for office use for decades.

In 1947, Dictaphone replaced wax cylinders with their DictaBelt technology, which cut a mechanical groove into a plastic belt instead of into a wax cylinder. This was later replaced by magnetic tape recording. However, cylinders for older style dictating machines continued to be available for some years, and it was not unusual to encounter cylinder dictating machines into the 1950s.

In the late 20th and early 21st century some new recordings have been made on cylinders for the novelty effect of using obsolete technology. Probably the most famous of these are by They Might Be Giants, who in 1996 recorded "I Can Hear You" and three other songs, performed without electricity, on an 1898 Edison wax recording studio phonograph at the Edison National Historic Site in West Orange, New Jersey. This song was released on Factory Showroom in 1996 and re-released on the 2002 compilation Dial-A-Song: 20 Years of They Might Be Giants. The other songs recorded were "James K. Polk," "Maybe I Know," and "The Edison Museum," a song about the site of the recording. These recordings were officially released online as MP3 files in 2001.

In 2010 the British steampunk band The Men That Will Not Be Blamed For Nothing released the track 'Sewer', from their debut album, Now That's What I Call Steampunk! Volume 1 on very limited edition Wax Cylinder, only 40 were made and only 30 were put on sale. The box set came with instructions on how to make your own cylinder player for less than £20. The BBC covered the release on Television on BBC Click, on BBC Online and on Radio 5 Live.[10]

In August 2010, Ash International and PARC released the first commercially available glow in the dark phonograph cylinder, which is a work by Michael Esposito and Carl Michael von Hausswolff, entitled "The Ghosts Of Effingham". The cylinder was released in a limited edition of 150 copies, produced by Vulcan Records, Sheffield England.

Preservation of cylinder recordings[edit]

Proper way to hold a cylinder record: put fingers on the inside; do not touch the outer surface which has the recording.

Because of the nature of the recording medium, playback of many cylinders can cause degradation of the recording. The replay of cylinders diminishes their fidelity and degrades their recorded signals. Additionally, when exposed to humidity, mold can penetrate cylinders’ surface and cause the recordings to have surface noise. Currently, the only professional machine manufactured for the playback of cylinder recordings is the Archéophone player, designed by Henri Chamoux. The Archéophone is used by the Edison National Historic Site, Bowling Green State University (Bowling Green, Ohio), The Department of Special Collections, Donald C Davidson Library at The University of California, Santa Barbara, and many other libraries and archives.

Other modern so-called 'plug-in' mounts, each incorporating the use of a Stanton 500AL MK II magnetic cartridge, have been manufactured from time to time. Information on each may be sighted on the Phonograph Makers Pages link. It is possible to use these on the Edison cylinder players.

Also of interest is the cylinder player built by BBC engineers working in 'Engineering Operations - Radio' in the early 1990s. This was equipped with a linear-tacking arm borrowed from a contemporary turntable, and an Ortofon cartridge.

This is the earliest surviving intentional recording of music, and was played at the conference introducing the phonograph to London.[11]

Problems playing this file? See media help.

In an attempt to preserve the historic content of the recordings, cylinders can be read with a confocal microscope and converted to a digital recording format. The resulting sound clip in most cases sounds better than stylus playback from the original cylinder. Having an electronic version of the original recordings enables archivists to open access to the recordings to a wider audience. This technique also has the potential to allow for reconstruction of damaged or broken cylinders. (Fadeyev & Haber, 2003)

Modern reproductions of cylinder and disc recordings usually give the impression that the introduction of discs was a quantum leap in audio fidelity, but this is on modern playback equipment; played on equipment from around 1900, the cylinders do not have noticeably more rumble and poorer bass reproduction than the discs. Another factor is that many cylinders are amateur recordings, while disc recording equipment was simply too expensive for anyone but professional engineers; many extremely poor recordings were made on cylinder, while the vast majority of disc recordings were competently recorded. All cylinder recordings were acoustically recorded as were early disc recordings. From the mid-1920s onwards, discs started to be recorded electrically which provided a much enhanced frequency range of recording.

Also important is the quality of the material: the earliest tinfoil recordings wore out fast. Once the tinfoil was removed from the cylinder it was nearly impossible to re-align in playable condition. None of the earliest tinfoil recordings has been played back since the 19th century. (Hypothetically in the future some sound might be salvaged from few surviving flattened out early tinfoil recordings.) The earliest soft wax recordings also wore out quite fast, though they have better fidelity than the early rubber discs.

One of the earliest surviving wax cylinder recordings.

Problems playing this file? See media help.

In addition to poor states of preservation, the poor impression modern listeners may get of wax cylinders is from their early date, which can compare unfavorably to recordings made even a dozen years later. Other than a single playable example from 1878 (from an experimental phonograph-clock), the oldest playable preserved cylinders are from the year 1888. These include a severely degraded recording of Johannes Brahms and a short speech by Sir Arthur Sullivan in fairly listenable condition. Somewhat later are the almost unlistenable 1889 amateur recordings of Nina Grieg. The problem with the wax cylinders is that being an organic material (it is not actually wax) readily supports the growth of mildew which penetrates throughout the cylinder and, if serious enough, renders the recording unplayable. The earliest preserved rubber disc recordings are children's records, featuring animal noises and nursery rhymes. This means that the earliest disc recordings most music lovers will hear are shellac discs made after 1900, after more than ten years of development.

Gallery[edit]

See also[edit]

References[edit]

Notes
Bibliography
  • Oliver Read and Walter L. Welch (1976). From Tin Foil to Stereo: Evolution of the Phonograph. Indianapolis, Indiana: Howard W. Sams & Co. Inc. ISBN 978-0672212062. 
  • George L. Frow and Albert F. Sefl (1978). The Edison Cylinder Phonographs 1877–1929. Sevenoaks, Kent: George F. Frow. ISBN 0-9505462-2-4. 
  • Fadeyev, V., and C. Haber; Haber; Radding; Maul; McBride; Golden (2003). "Reconstruction of mechanically recorded sound by image processing" (PDF). Journal of the Audio Engineering Society 51 (December): 172. Bibcode:2001ASAJ..115.2494F. 
  • Dietrich Schüller (2004). A. Seeger and S. Chaudhuri, ed., ed. "Technology for the Future." In Archives for the Future: Global Perspectives on Audiovisual Archives in the 21st Century. Calcutta, India: Seagull Books. 
  • David L. Morton Jr. (2004). Sound Recording - The Life Story of a Technology. Baltimore, Maryland: Johns Hopkins University Press. 

External links[edit]