Phosphoinositide-dependent kinase-1

From Wikipedia, the free encyclopedia
Jump to: navigation, search
3-phosphoinositide dependent protein kinase 1
Protein PDPK1 PDB 1h1w.png
PDB rendering based on 1h1w.
Available structures
PDB Ortholog search: PDBe, RCSB
Symbols PDPK1 ; PDK1; PDPK2; PRO0461
External IDs OMIM605213 MGI1338068 HomoloGene37643 IUPHAR: 1519 ChEMBL: 2534 GeneCards: PDPK1 Gene
EC number
RNA expression pattern
PBB GE PDPK1 32029 at tn.png
PBB GE PDPK1 204524 at tn.png
More reference expression data
Species Human Mouse
Entrez 5170 18607
Ensembl ENSG00000140992 ENSMUSG00000024122
UniProt O15530 Q9Z2A0
RefSeq (mRNA) NM_001261816 NM_001080773
RefSeq (protein) NP_001248745 NP_001074242
Location (UCSC) Chr 16:
2.59 – 2.65 Mb
Chr 17:
24.07 – 24.15 Mb
PubMed search [1] [2]

In the field of biochemistry, 3-phosphoinositide dependent protein kinase-1, also known as PDPK1 is a protein which in humans is encoded by the PDPK1 gene.[1] It is implicated in the development and progression of melanomas.[2]


PDPK1 is a master kinase, which is crucial for the activation of AKT/PKB and many other AGC kinases including PKC, S6K, SGK. An important role for PDPK1 is in the signalling pathways activated by several growth factors and hormones including insulin signaling.

Mice lacking PDPK1 die during early embryonic development, indicating that this enzyme is critical for transmitting the growth-promoting signals nescessary for normal mammalian development.

Mice that are deficient in PDPK1 have a ≈40% decrease in body mass, mild glucose intolerance, and are resistant to cancer brought about by hyperactivation of the PI3K pathway (PTEN+/-).[3] [4]


PDPK1 stands for 3-phosphoinositide-dependent protein kinase 1. PDPK1 functions downstream of PI3K through PDPK1's interaction with membrane phospholipids including phosphatidylinositols, phosphatidylinositol (3,4)-bisphosphate and phosphatidylinositol (3,4,5)-trisphosphate. PI3K indirectly regulates PDPK1 by phosphorylating phosphatidylinositols which in turn generates phosphatidylinositol (3,4)-bisphosphate and phosphatidylinositol (3,4,5)-trisphosphate. However, PDPK1 is believed to be constitutively active and does not always require phosphatidylinositols for its activities.

Phosphatidylinositols are only required for the activation at the membrane of some substrates including AKT. PDPK1 however does not require membrane lipid binding for the efficient phosphorylation of most of its substrates in the cytosol (not at the cell membrane).


The structure of PDPK1 can be divided into two domains; the kinase or catalytic domain and the PH domain. The PH domain functions mainly in the interaction of PDPK1 with phosphatidylinositol (3,4)-bisphosphate and phosphatidylinositol (3,4,5)-trisphosphate which is important in localization and activation of some of membrane associated PDPK1's substrates including AKT.

The kinase domain has three ligand binding sites; the substrate binding site, the ATP binding site, and the docking site (also known as PIF pocket). Several PDPK1 substrates including S6K and Protein kinase C, require the binding at this docking site. Small molecule allosteric activators of PDPK1 were shown to selectively inhibit activation of substrates that require docking site interaction. These compounds do not bind to the active site and allow PDPK1 to activate other substrates that do not require docking site interaction. PDPK1 is constitutively active and at present, there is no known inhibitor proteins for PDPK1.

The activation of PDPK1's main effector, AKT, is believed to require a proper orientation of the kinase and PH domains of PDPK1 and AKT at the membrane.


Phosphoinositide-dependent kinase-1 has been shown to interact with:


  1. ^ "Entrez Gene: PDPK1". 
  2. ^ Scortegagna M, Ruller C, Feng Y, Lazova R, Kluger H, Li JL et al. (2014). "Genetic inactivation or pharmacological inhibition of Pdk1 delays development and inhibits metastasis of Braf(V600E)::Pten(-/-) melanoma". Oncogene 33 (34): 4330–9. doi:10.1038/onc.2013.383. 
  3. ^ Mora A, Komander D, van Aalten DM, Alessi DR (April 2004). "PDK1, the master regulator of AGC kinase signal transduction". Semin. Cell Dev. Biol. 15 (2): 161–70. doi:10.1016/j.semcdb.2003.12.022. PMID 15209375. 
  4. ^ Frödin M, Antal TL, Dümmler BA, Jensen CJ, Deak M, Gammeltoft S et al. (October 2002). "A phosphoserine/threonine-binding pocket in AGC kinases and PDK1 mediates activation by hydrophobic motif phosphorylation". EMBO J. 21 (20): 5396–407. doi:10.1093/emboj/cdf551. PMC 129083. PMID 12374740. 
  5. ^ Barry FA, Gibbins JM (April 2002). "Protein kinase B is regulated in platelets by the collagen receptor glycoprotein VI". J. Biol. Chem. 277 (15): 12874–8. doi:10.1074/jbc.M200482200. PMID 11825911. 
  6. ^ Persad S, Attwell S, Gray V, Mawji N, Deng JT, Leung D et al. (July 2001). "Regulation of protein kinase B/Akt-serine 473 phosphorylation by integrin-linked kinase: critical roles for kinase activity and amino acids arginine 211 and serine 343". J. Biol. Chem. 276 (29): 27462–9. doi:10.1074/jbc.M102940200. PMID 11313365. 
  7. ^ a b c Hodgkinson CP, Sale GJ (January 2002). "Regulation of both PDK1 and the phosphorylation of PKC-zeta and -delta by a C-terminal PRK2 fragment". Biochemistry 41 (2): 561–9. doi:10.1021/bi010719z. PMID 11781095. 
  8. ^ a b c d Balendran A, Biondi RM, Cheung PC, Casamayor A, Deak M, Alessi DR (July 2000). "A 3-phosphoinositide-dependent protein kinase-1 (PDK1) docking site is required for the phosphorylation of protein kinase Czeta (PKCzeta ) and PKC-related kinase 2 by PDK1". J. Biol. Chem. 275 (27): 20806–13. doi:10.1074/jbc.M000421200. PMID 10764742. 
  9. ^ Biondi RM, Cheung PC, Casamayor A, Deak M, Currie RA, Alessi DR (March 2000). "Identification of a pocket in the PDK1 kinase domain that interacts with PIF and the C-terminal residues of PKA". EMBO J. 19 (5): 979–88. doi:10.1093/emboj/19.5.979. PMC 305637. PMID 10698939. 
  10. ^ a b Park J, Leong ML, Buse P, Maiyar AC, Firestone GL, Hemmings BA (June 1999). "Serum and glucocorticoid-inducible kinase (SGK) is a target of the PI 3-kinase-stimulated signaling pathway". EMBO J. 18 (11): 3024–33. doi:10.1093/emboj/18.11.3024. PMC 1171384. PMID 10357815. 
  11. ^ Le Good JA, Ziegler WH, Parekh DB, Alessi DR, Cohen P, Parker PJ (September 1998). "Protein kinase C isotypes controlled by phosphoinositide 3-kinase through the protein kinase PDK1". Science 281 (5385): 2042–5. doi:10.1126/science.281.5385.2042. PMID 9748166. 
  12. ^ a b Chun J, Kwon T, Lee E, Suh PG, Choi EJ, Sun Kang S (October 2002). "The Na(+)/H(+) exchanger regulatory factor 2 mediates phosphorylation of serum- and glucocorticoid-induced protein kinase 1 by 3-phosphoinositide-dependent protein kinase 1". Biochem. Biophys. Res. Commun. 298 (2): 207–15. doi:10.1016/s0006-291x(02)02428-2. PMID 12387817. 
  13. ^ Sato S, Fujita N, Tsuruo T (October 2002). "Regulation of kinase activity of 3-phosphoinositide-dependent protein kinase-1 by binding to 14-3-3". J. Biol. Chem. 277 (42): 39360–7. doi:10.1074/jbc.M205141200. PMID 12177059. 

Further reading[edit]

External links[edit]