Ping-pong lemma

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In mathematics, the ping-pong lemma, or table-tennis lemma, is any of several mathematical statements that ensure that several elements in a group acting on a set freely generates a free subgroup of that group.

History[edit]

The ping-pong argument goes back to late 19th century and is commonly attributed[1] to Felix Klein who used it to study subgroups of Kleinian groups, that is, of discrete groups of isometries of the hyperbolic 3-space or, equivalently Möbius transformations of the Riemann sphere. The ping-pong lemma was a key tool used by Jacques Tits in his 1972 paper[2] containing the proof of a famous result now known as the Tits alternative. The result states that a finitely generated linear group is either virtually solvable or contains a free subgroup of rank two. The ping-pong lemma and its variations are widely used in geometric topology and geometric group theory.

Modern versions of the ping-pong lemma can be found in many books such as Lyndon&Schupp,[3] de la Harpe,[1] Bridson&Haefliger[4] and others.

Formal statements[edit]

Ping-pong lemma for several subgroups[edit]

This version of the ping-pong lemma ensures that several subgroups of a group acting on a set generate a free product. The following statement appears in,[5] and the proof is from.[1]

Let G be a group acting on a set X and let H1, H2,...., Hk be nontrivial subgroups of G where k≥2, such that at least one of these subgroups has order greater than 2. Suppose there exist disjoint nonempty subsets X1, X2,....,Xk of X such that the following holds:

  • For any is and for any hHi, h≠1 we have h(Xs)⊆Xi.

Then

\langle H_1,\dots, H_k\rangle=H_1\ast\dots \ast H_k.

Proof[edit]

By the definition of free product, it suffices to check that a given reduced word is nontrivial. Let w be such a word, and let

 w= \prod_{i=1}^m w_{\alpha_i,\beta_i}.

Where ws,βkHs for all such βk, and since w is fully reduced αi≠ αi+1 for any i. We then let w act on an element of one of the sets Xi. As we assume for at least one subgroup Hi has order at least 3, without loss we may assume that H1 is at least 3. We first make the assumption that α1 and αm are both 1. From here we consider w acting on X2. We get the following chain of containments and note that since the Xi are disjoint that w acts nontrivially and is thus not the identity element.

 w(X_2) \subseteq \prod_{i=1}^{m-1} w_{\alpha_i,\beta_i}(X_1) \subseteq \prod_{i=1}^{m-2} w_{\alpha_i,\beta_i}(X_{\alpha_{m-1}})\subseteq \dots \subseteq w_{1,\beta_1}w_{\alpha_2,\beta_2}(X_{\alpha_3}) \subseteq  \subseteq w_{1,\beta_1}(X_{\alpha_2})\subseteq X_1

To finish the proof we must consider the three cases:

  • If  \alpha_1 = 1;\alpha_m\neq 1 , then let  h\in H_1\setminus \{w_{1,\beta_1}^{-1},1\}
  • If \alpha_1\neq 1;\alpha_m=1, then let  h\in H_1\setminus \{w_{1,\beta_m},1\}
  • And if  \alpha_1\neq 1;\alpha_m\neq 1, then let  h\in H_1\setminus \{1\}

In each case, hwh−1 is a reduced word with α1' and αm '' both 1, and thus is nontrivial. Finally, hwh−1 is not 1, and so neither is w. This proves the claim.

The Ping-pong lemma for cyclic subgroups[edit]

Let G be a group acting on a set X. Let a1,...,ak be elements of G, where k ≥ 2. Suppose there exist disjoint nonempty subsets

X1+,...,Xk+ and X1,...,Xk

of X with the following properties:

  • ai(X − Xi) ⊆ Xi+ for i = 1, ..., k;
  • ai−1(X − Xi+) ⊆ Xi for i = 1, ..., k.

Then the subgroup H = <a1, ..., ak> ≤ G generated by a1, ..., ak is free with free basis {a1, ..., ak}.

Proof[edit]

This statement follows as a corollary of the version for general subgroups if we let Xi= Xi+Xi- and let Hi = ⟨ai⟩.

Examples[edit]

Special linear group example[edit]

One can use the ping-pong lemma to prove[1] that the subgroup H = <A,B>≤SL(2,Z), generated by the matrices

\scriptstyle A=\begin{pmatrix}1 & 2\\ 0 &1 \end{pmatrix} and \scriptstyle B=\begin{pmatrix}1 & 0\\ 2 &1 \end{pmatrix}

is free of rank two.

Proof[edit]

Indeed, let H1 = <A> and H2 = <B> be cyclic subgroups of SL(2,Z) generated by A and B accordingly. It is not hard to check that A and B are elements of infinite order in SL(2,Z) and that

H_1=\{A^n|n\in \mathbb Z\}=\left\{\begin{pmatrix}1 & 2n\\ 0 & 1 \end{pmatrix} : n\in\mathbb Z\right\}

and

H_2=\{B^n|n\in \mathbb Z\}=\left\{\begin{pmatrix}1 & 0\\ 2n & 1 \end{pmatrix} : n\in\mathbb Z\right\}.

Consider the standard action of SL(2,Z) on R2 by linear transformations. Put

X_1=\left\{\begin{pmatrix}x \\ y \end{pmatrix}\in \mathbb R^2 : |x|>|y|\right\}

and

X_2=\left\{\begin{pmatrix}x \\ y \end{pmatrix}\in \mathbb R^2 : |x|<|y|\right\}.

It is not hard to check, using the above explicitly descriptions of H1 and H2 that for every nontrivial g ∈ H1 we have g(X2) ⊆ X1 and that for every nontrivial g ∈ H2 we have g(X1) ⊆ X2. Using the alternative form of the ping-pong lemma, for two subgroups, given above, we conclude that H = H1H2. Since the groups H1 and H2 are infinite cyclic, it follows that H is a free group of rank two.

Word-hyperbolic group example[edit]

Let G be a word-hyperbolic group which is torsion-free, that is, with no nontrivial elements of finite order. Let gh ∈ G be two non-commuting elements, that is such that gh ≠ hg. Then there exists M≥1 such that for any integers n ≥ M, m ≥ M the subgroup H = <gn, hm> ≤ G is free of rank two.

Sketch of the proof[6][edit]

The group G acts on its hyperbolic boundaryG by homeomorphisms. It is known that if a ∈ G is a nontrivial element then a has exactly two distinct fixed points, a and a−∞ in ∂G and that a is an attracting fixed point while a−∞ is a repelling fixed point.

Since g and h do not commute, the basic facts about word-hyperbolic groups imply that g, g−∞, h and h−∞ are four distinct points in ∂G. Take disjoint neighborhoods U+, U, V+ and V of g, g−∞, h and h−∞ in ∂G respectively. Then the attracting/repelling properties of the fixed points of g and h imply that there exists M ≥ 1 such that for any integers n ≥ M, m ≥ M we have:

  • gn(∂GU) ⊆ U+
  • gn(∂GU+) ⊆ U
  • hm(∂GV) ⊆ V+
  • hm(∂GV+) ⊆ V

The ping-pong lemma now implies that H = <gn, hm> ≤ G is free of rank two.

Applications of the ping-pong lemma[edit]

References[edit]

  1. ^ a b c d Pierre de la Harpe. Topics in geometric group theory. Chicago Lectures in Mathematics. University of Chicago Press, Chicago. ISBN 0-226-31719-6; Ch. II.B "The table-Tennis Lemma (Klein's criterion) and examples of free products"; pp. 25–41.
  2. ^ a b J. Tits. Free subgroups in linear groups. Journal of Algebra, vol. 20 (1972), pp. 250–270
  3. ^ a b Roger C. Lyndon and Paul E. Schupp. Combinatorial Group Theory. Springer-Verlag, New York, 2001. "Classics in Mathematics" series, reprint of the 1977 edition. ISBN 978-3-540-41158-1; Ch II, Section 12, pp. 167–169
  4. ^ Martin R. Bridson, and André Haefliger. Metric spaces of non-positive curvature. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 319. Springer-Verlag, Berlin, 1999. ISBN 3-540-64324-9; Ch.III.Γ, pp. 467–468
  5. ^ Andrij Olijnyk and Vitaly Suchchansky. Representations of free products by infinite unitriangular matrices over finite fields. International Journal of Algebra and Computation. Vol. 14 (2004), no. 5–6, pp. 741–749; Lemma 2.1
  6. ^ a b M. Gromov. Hyperbolic groups. Essays in group theory, pp. 75–263, Mathematical Sciiences Research Institute Publications, 8, Springer, New York, 1987; ISBN 0-387-96618-8; Ch. 8.2, pp. 211–219.
  7. ^ Alexander Lubotzky. Lattices in rank one Lie groups over local fields. Geometric and Functional Analysis, vol. 1 (1991), no. 4, pp. 406–431
  8. ^ Richard P. Kent, and Christopher J. Leininger. Subgroups of mapping class groups from the geometrical viewpoint. In the tradition of Ahlfors-Bers. IV, pp. 119–141, Contemporary Mathematics series, 432, American Mathematical Society, Providence, RI, 2007; ISBN 978-0-8218-4227-0; 0-8218-4227-7
  9. ^ M. Bestvina, M. Feighn, and M. Handel. Laminations, trees, and irreducible automorphisms of free groups. Geometric and Functional Analysis, vol. 7 (1997), no. 2, pp. 215–244.
  10. ^ Pierre de la Harpe. Free groups in linear groups. L'Enseignement Mathématique (2), vol. 29 (1983), no. 1-2, pp. 129–144
  11. ^ Bernard Maskit. Kleinian groups. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 287. Springer-Verlag, Berlin, 1988. ISBN 3-540-17746-9; Ch. VII.C and Ch. VII.E pp.149–156 and pp. 160–167
  12. ^ Pierre de la Harpe. Topics in geometric group theory. Chicago Lectures in Mathematics. University of Chicago Press, Chicago. ISBN 0-226-31719-6; Ch. II.B "The table-Tennis Lemma (Klein's criterion) and examples of free products"; pp. 187–188.
  13. ^ Alex Eskin, Shahar Mozes and Hee Oh. On uniform exponential growth for linear groups. Inventiones Mathematicae. vol. 60 (2005), no. 1, pp.1432–1297; Lemma 2.2
  14. ^ Roger C. Alperin and Guennadi A. Noskov. Uniform growth, actions on trees and GL2. Computational and Statistical Group Theory:AMS Special Session Geometric Group Theory, April 21–22, 2001, Las Vegas, Nevada, AMS Special Session Computational Group Theory, April 28–29, 2001, Hoboken, New Jersey. (Robert H. Gilman, Vladimir Shpilrain, Alexei G. Myasnikov, editors). American Mathematical Society, 2002. ISBN 978-0-8218-3158-8; page 2, Lemma 3.1
  15. ^ Yves de Cornulier and Romain Tessera. Quasi-isometrically embedded free sub-semigroups. Geometry & Topology, vol. 12 (2008), pp. 461–473; Lemma 2.1

See also[edit]