Plant perception (physiology)

From Wikipedia, the free encyclopedia
  (Redirected from Plant neurobiology)
Jump to: navigation, search
This article is about the physiology of perception and response in multicellular plants. For "plant emotion" especially as applies to the work of Cleve Backster, see Plant perception (paranormal).
The leaf closing after touch in Mimosa pudica depends upon electrical signals.
Vine tendril. Note how the plant reaches for and wraps around the galvanised wire provided for the purpose. This is a very tough twig and appears to have no other purpose than support for the plant. Nothing else grows from it. It must reach out softly, then wrap around and then dry and toughen. See more at thigmotropism.

In botany, plant perception is the ability of plants to sense the environment and adjust their morphology, physiology and phenotype accordingly.[1] Research draws on the fields of plant physiology, ecology and molecular biology. Examples of stimuli which plants perceive and can react to include chemicals, gravity, light, moisture, infections, temperature, oxygen and carbon dioxide concentrations, parasite infestation, physical disruption, sound,[2] and touch. Plants have a variety of means to detect such stimuli and a variety of reaction responses or behaviors.

Processes[edit]

Detection[edit]

Plant perception occurs on a cellular level. Research published in September 2006[3] has shown, certainly in the case of Arabidopsis thaliana, the role of cryptochromes in the perception of magnetic fields by plants. Mechanical perturbation can also be detected by plants.[4] Poplar stems can detect reorientation and inclination (equilibrioception).[5]

Plant response strategies depend on quick and reliable recognition-systems.

Pathway signals[edit]

Wounded tomatoes are known to produce the volatile odour methyl-jasmonate as an alarm-signal.[6] Plants in the neighbourhood can then detect the chemical and prepare for the attack by producing chemicals that defend against insects or attract predators.[6]

Plants systematically use hormonal signalling pathways to coordinate their own development and morphology.

Neurochemicals[edit]

Plants produce several proteins found in the animal neuron systems such as acetylcholine esterase, glutamate receptors, GABA receptors, and endocannabinoid signaling components. They also use ATP, NO, and ROS like animals for signaling.[7]

Electrophysiology[edit]

Plant cells can be electrically excitable and can display rapid electrical responses (action potentials) to environmental stimuli. These action potentials can influence processes such as actin-based cytoplasmic streaming, plant organ movements, wound responses, respiration, photosynthesis and flowering.[8][9][10][11]

These electrical responses can cause the synthesis of numerous organic molecules including ones that act as neuroactive substances in other organisms.[citation needed] Thus, plants accomplish behavioural responses to environmental, communicative, and ecological contexts.

While many cells in nearly all living organisms can be electrically excitable, this is not evidence of neurons, or of intelligence.[citation needed]

Signal response[edit]

A plant's concomitant reactive behavior is mediated by phytochromes, kinins, hormones, antibiotic or other chemical release, changes of water and chemical transport, and other means. These responses are generally slow, taking at minimum a number of hours to accomplish, and can best be observed with time-lapse cinematography, but rapid movements can occur as well. Plants respond to volatile signals produced by other plants.[12][13] Jasmonate levels also increase rapidly in response to mechanical perturbations such as tendril coiling.[14]

Plants have many strategies to fight off pests. For example, they can produce different toxins (phytoalexins) against invaders or they can induce rapid cell death in invading cells to hinder the pests from spreading out.

Some plants are capable of rapid movement: the mimosa plant (Mimosa pudica) makes its thin leaves point down at the slightest touch and carnivorous plants such as the Venus flytrap snap shut by the touch of insects.[citation needed]

In plants, the mechanism responsible for adaptation is signal transduction.[15][16][17][18]

Adaptive responses include:

Aspects of perception[edit]

Light[edit]

The sunflower, a common heliotropic plant which perceives and reacts to sunlight by slow turning movement

Many plant-organs contain photo-sensitive compounds (phototropins, cryptochromes and phytochromes) each reacting very specifically to certain wavelengths of light[citation needed]. These light-sensors tell the plant if it's day or night, how long the day is, how much light is available and from where the light comes. Shoots grow towards light and roots usually grow away from light. These responses are called phototropism and skototropism respectively. They are brought about by light sensitive pigments like phototropins and phytochromes and the plant hormone auxin[citation needed]. Many plants exhibit certain phenomena at specific times of the day, for example certain flowers open only in the mornings. Plants keep track of the time of the day with a molecular clock[citation needed]. This internal clock is set to the solar clock every day using sunlight. The internal clock coupled with the ability to perceive light also allows plants to measure the time of the day and so find the season of the year. This is how many plants know when to flower.[citation needed] (see photoperiodism) The seeds of many plants sprout only after they are exposed to light. This response is carried out by phytochrome signalling. Plants are also able to sense the quality of light and respond appropriately, for example in low light conditions plants produce more photosynthetic pigments whereas when the light is very bright and/or if the levels of harmful UV increase, plants produce more of their protective pigments that act as sunscreens.[26]

Plant intelligence[edit]

Further information: Hormonal sentience

Plants do not have a brain or neuronal network, but reactions within signalling pathways may provide a biochemical basis for learning and memory.[27] Controversially, the brain is used as a metaphor in plant intelligence to provide an integrated view of signalling.[28]

Plants are not passive entities merely subject to environmental forces, nor are they 'automata'-like organisms based only on reflexes and optimised solely for accumulation of photosynthate. Plants respond sensitively to environmental stimuli by movement and changes in morphology. They signal and communicate within and among themselves as they actively compete for limited resources, both above and below ground. In addition, plants accurately compute their circumstances, use sophisticated cost–benefit analysis and take tightly controlled actions to mitigate and control diverse environmental stressors. Plants are also capable of discriminating positive and negative experiences and of 'learning' (registering memories) from their past experiences.[29][30][31] Plants use this information to update their behaviour in order to survive present and future challenges of their environment. Plants are also capable of refined recognition of self and non-self, and are territorial in behaviour.[citation needed]

Plant calculation and response claims to study the role of signalling, communication and behaviour to integrate data obtained at the genetic, molecular, biochemical and cellular levels, with the physiology, development and behaviour of individual organisms, plant ecosystems and evolution.

The neurobiological view sees plants as information-processing organisms with rather complex processes of communication occurring throughout the individual plant organism. Plant neurobiology researches how environmental information is gathered, processed, integrated and shared (sensory plant biology) to enable these adaptive and coordinated responses (plant behaviour); and how sensory perceptions and behavioural events are 'remembered' in order to allow predictions of future activities upon the basis of past experiences. Plants, it is claimed by some plant physiologists, are as sophisticated in behaviour as animals but this sophistication has been masked by the time scales of plants' response to stimuli, many orders of magnitude slower than animals'.[citation needed]

It has been argued that although plants are capable of adaptation, it should not be called intelligence, as neurobiologists rely primarily on metaphors and analogies to argue that complex responses in plants can only be produced by intelligence.[32]"A bacterium can monitor its environment and instigate developmental processes appropriate to the prevailing circumstances, but is that intelligence? Such simple adaptation behaviour might be bacterial intelligence but is clearly not animal intelligence."[33] However, plant intelligence fits with the definition of intelligence proposed by David Stenhouse in a book he wrote about evolution where he described it as "adaptively variable behaviour during the lifetime of the individual".[34]

It is also argued that a plant cannot have goals because operational control of the plant's organs is devolved.[33]

Charles Darwin studied the movement of plants and in 1880 published a book The Power of Movement in Plants. In the book he concludes:

It is hardly an exaggeration to say that the tip of the radicle thus endowed [..] acts like the brain of one of the lower animals; the brain being situated within the anterior end of the body, receiving impressions from the sense-organs, and directing the several movements.

In philosophy, there are few studies of the implications of plant perception. Michael Marder put forth a phenomenology of plant life based on the physiology of plant perception.[35] Paco Calvo Garzon offers a philosophical take on plant perception based on the cognitive sciences and the computational modeling of consciousness.[36]

Comparison to neurobiology[edit]

A plant's sensory and response system has been compared to the neurobiological processes of animals. Plant neurobiology, an unfamiliar misnomer, concerns mostly the sensory adaptive behaviour of plants and plant electrophysiology. The Indian scientist J. C. Bose is credited as the first person to research and talk about neurobiology of plants. Many plant scientists and neuroscientists, however, view this as inaccurate, because plants do not have neurons.[32]

The ideas behind plant neurobiology were criticised in a 2007 article[32] published in Trends in Plant Science by Amedeo Alpi and 35 other scientists, including such eminent plant biologists as Gerd Jürgens, Ben Scheres, and Chris Sommerville. The breadth of fields of plant science represented by these researchers reflects the fact that the vast majority of the plant science research community reject plant neurobiology. Their main arguments are that:[32]

  • "Plant neurobiology does not add to our understanding of plant physiology, plant cell biology or signaling".
  • "There is no evidence for structures such as neurons, synapses or a brain in plants".
  • The common occurrence of plasmodesmata in plants which "poses a problem for signaling from an electrophysiological point of view" since extensive electrical coupling would preclude the need for any cell-to-cell transport of a ‘neurotransmitter-like’ compounds.

The authors call for an end to "superficial analogies and questionable extrapolations" if the concept of "plant neurobiology" is to benefit the research community.[32]

There were several responses to the criticism clarifying that the term "plant neurobiology" is a metaphor and metaphors have proved useful on several previous occasions.[37][38] Plant ecophysiology describes this phenomenon.

See also[edit]

References[edit]

  1. ^ Trewavas, A. (2005). "Green plants as intelligent organisms". Trends in Plant Science 10 (9): 413–419. doi:10.1016/j.tplants.2005.07.005. PMID 16054860.  edit
  2. ^ Bailey, N. W.; Fowler-Finn, K. D.; Rebar, D.; Rodriguez, R. L. (2013). "Green symphonies or wind in the willows? Testing acoustic communication in plants". Behavioral Ecology 24 (4): 797. doi:10.1093/beheco/ars228.  edit
  3. ^ The "sixth sense" of plants
  4. ^ Jaffe, M. J.; Forbes, S. (1993). "Thigmomorphogenesis: the effect of mechanical perturbation on plants". Plant Growth Regulation 12 (3): 313. doi:10.1007/BF00027213. PMID 11541741.  edit
  5. ^ Azri, W.; Chambon, C.; Herbette, S. P.; Brunel, N.; Coutand, C.; Leplé, J. C.; Ben Rejeb, I.; Ammar, .; Julien, J. L.; Roeckel-Drevet, P. (2009). "Proteome analysis of apical and basal regions of poplar stems under gravitropic stimulation". Physiologia Plantarum 136 (2): 193–208. doi:10.1111/j.1399-3054.2009.01230.x. PMID 19453506.  edit
  6. ^ a b http://www.pnas.org/content/87/19/7713.abstract
  7. ^ Baluška F, Volkmann D, Mancuso S (2006) Communication in Plants: Neuronal Aspects of Plant Life. Springer Verlag. ISBN 978-3-540-28475-8
  8. ^ Wagner E, Lehner L, Normann J, Veit J, Albrechtova J (2006). Hydroelectrochemical integration of the higher plant—basis for electrogenic flower induction. pp 369–389 In: Balusˇka F, Mancuso S, Volkmann D (eds) Communication in plants: neuronal aspects of plant life. Springer, Berlin.
  9. ^ Fromm J, Lautner S. (2007). Electrical signals and their physiological significance in plants. Plant Cell Environ. 30(3):249-57. doi:10.1111/j.1365-3040.2006.01614.x PMID 17263772
  10. ^ Zimmermann, M. R.; Maischak, H.; Mithofer, A.; Boland, W.; Felle, H. H. (2009). "System Potentials, a Novel Electrical Long-Distance Apoplastic Signal in Plants, Induced by Wounding". Plant Physiology 149 (3): 1593–1600. doi:10.1104/pp.108.133884. PMC 2649404. PMID 19129416.  edit
  11. ^ Pickard, B. G. (1973). "Action Potentials in Higher Plants". Botanical Review 39 (2): 172–201. doi:10.1007/BF02859299. JSTOR 4353850.  edit
  12. ^ Proc Natl Acad Sci U S A. 1990 October; 87(19): 7713–7716. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC54818/
  13. ^ Karban, R.; Baxter, K. J. (2001). Journal of Insect Behavior 14 (2): 147. doi:10.1023/A:1007893626166.  edit
  14. ^ Falkenstein, E.; Groth, B.; Mith�fer, A.; Weiler, E. (1991). "Methyljasmonate and ?-linolenic acid are potent inducers of tendril coiling". Planta 185 (3). doi:10.1007/BF00201050.  edit
  15. ^ Scheel, Dierk; Wasternack, C. (2002). Plant signal transduction. Oxford: Oxford University Press. ISBN 0-19-963879-9. 
  16. ^ Xiong, L.; Zhu, J. K. (2001). "Abiotic stress signal transduction in plants: Molecular and genetic perspectives". Physiologia Plantarum 112 (2): 152. doi:10.1034/j.1399-3054.2001.1120202.x. PMID 11454221.  edit
  17. ^ Clark, GB; Thompson Jr, G; Roux, SJ (2001). "Signal transduction mechanisms in plants: an overview". Current science 80 (2): 170–7. PMID 12194182.  edit
  18. ^ Trewavas, A (1999). "How plants learn". Proceedings of the National Academy of Sciences of the United States of America 96 (8): 4216–8. Bibcode:1999PNAS...96.4216T. doi:10.1073/pnas.96.8.4216. PMC 33554. PMID 10200239.  edit
  19. ^ a b De Kroon, H. and Hutchings, M.J. (1995) Morphological plasticity in clonal plants: the foraging concept reconsidered. J. Ecol. 83, 143–152
  20. ^ Grime, J. P.; MacKey, J. M. L. (2002). Evolutionary Ecology 16 (3): 299. doi:10.1023/A:1019640813676.  edit
  21. ^ Hutchings, M.; Dekroon, H. (1994). Foraging in Plants: the Role of Morphological Plasticity in Resource Acquisition 25. p. 159. doi:10.1016/S0065-2504(08)60215-9.  edit
  22. ^ Honda, H.; Fisher, J. (1978). "Tree branch angle: maximizing effective leaf area". Science 199 (4331): 888–890. Bibcode:1978Sci...199..888H. doi:10.1126/science.199.4331.888. PMID 17757590.  edit
  23. ^ McConnaughay, K. D. M.; Bazzaz, F. A. (1991). "Is Physical Space a Soil Resource?". Ecology 72 (1): 94–103. doi:10.2307/1938905. JSTOR 1938905.  edit
  24. ^ McConnaughay, K. D. M.; Bazzaz, F. A. (1992). "The Occupation and Fragmentation of Space: Consequences of Neighbouring Shoots". Functional Ecology 6 (6): 711–718. doi:10.2307/2389968. JSTOR 2389968.  edit
  25. ^ Schenk, H.; Callaway, R.; Mahall, B. (1999). Spatial Root Segregation: Are Plants Territorial? 28. p. 145. doi:10.1016/S0065-2504(08)60032-X.  edit
  26. ^ Åke Strid and Robert J. Porra. Alterations in Pigment Content in Leaves of Pisum sativum After Exposure to Supplementary UV-B. Plant and Cell Physiology, 1992, Vol. 33, No. 7 1015-1023
  27. ^ Bhalla, US; Iyengar, R (1999). "Emergent properties of networks of biological signaling pathways". Science 283 (5400): 381–7. Bibcode:1999Sci...283..381B. doi:10.1126/science.283.5400.381. PMID 9888852.  edit
  28. ^ Brenner, E.; Stahlberg, R.; Mancuso, S.; Vivanco, J.; Baluska, F.; Vanvolkenburgh, E. (2006). "Plant neurobiology: an integrated view of plant signaling". Trends in Plant Science 11 (8): 413. doi:10.1016/j.tplants.2006.06.009. PMID 16843034.  edit
  29. ^ Goh, C. H.; Nam, H. G.; Park, Y. S. (2003). "Stress memory in plants: A negative regulation of stomatal response and transient induction of rd22 gene to light in abscisic acid-entrained Arabidopsis plants". The Plant Journal 36 (2): 240–255. doi:10.1046/j.1365-313X.2003.01872.x. PMID 14535888.  edit
  30. ^ Volkov, A. G.; Carrell, H.; Baldwin, A.; Markin, V. S. (2009). "Electrical memory in Venus flytrap". Bioelectrochemistry 75 (2): 142–147. doi:10.1016/j.bioelechem.2009.03.005. PMID 19356999.  edit
  31. ^ Rensing, L.; Koch, M.; Becker, A. (2009). "A comparative approach to the principal mechanisms of different memory systems". Naturwissenschaften 96 (12): 1373–1384. Bibcode:2009NW.....96.1373R. doi:10.1007/s00114-009-0591-0. PMID 19680619.  edit
  32. ^ a b c d e Plant neurobiology: no brain, no gain? Alpi A, Amrhein N, Bertl A, Blatt MR, Blumwald E, Cervone F, Dainty J, De Michelis MI, Epstein E, Galston AW, Goldsmith MH, Hawes C, Hell R, Hetherington A, Hofte H, Juergens G, Leaver CJ, Moroni A, Murphy A, Oparka K, Perata P, Quader H, Rausch T, Ritzenthaler C, Rivetta A, Robinson DG, Sanders D, Scheres B, Schumacher K, Sentenac H, Slayman CL, Soave C, Somerville C, Taiz L, Thiel G, Wagner R. (2007). Trends Plant Sci. Apr;12(4):135-6. PMID 17368081
  33. ^ a b Firn, R. (2004). "Plant intelligence: an alternative point of view". Annals of botany 93 (4): 345–351. doi:10.1093/aob/mch058. PMID 15023701.  edit
  34. ^ http://www.newscientist.com/article/mg17523535.700-not-just-a-pretty-face.html
  35. ^ http://www.ncbi.nlm.nih.gov/pubmed/22951403
  36. ^ http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2634130/
  37. ^ Trewavas, A. (2007). "Response to Alpi et al.: Plant neurobiology--all metaphors have value.". Trends in Plant Science 12 (6): 231–233. doi:10.1016/j.tplants.2007.04.006. PMID 17499006.  edit
  38. ^ Brenner, E.; Stahlberg, R.; Mancuso, S.; Baluska, F.; Van Volkenburgh, E. (2007). "Response to Alpi et al.: plant neurobiology: the gain is more than the name". Trends in Plant Science 12 (7): 285–286. doi:10.1016/j.tplants.2007.06.005. PMID 17591455.  edit
  • Baluška F, Mancuso S (ed) (2009) Signalling in Plants. Springer Verlag
  • Baluška F (ed) (2009) Plant-Environment Interactions: From Sensory Plant Biology to Active Plant Behavior. Springer Verlag
  • Brenner E, Stahlberg R, Mancuso S, Vivanco J, Baluška F, Van Volkenburgh E (2006) Plant neurobiology: an integrated view of plant signaling. Trends Plant Sci 11: 413-419
  • Gilroy S, Masson PH (2007) Plant Tropisms. Iowa State University Press
  • Karban R (2008) Plant behaviour and communication. Ecol Lett 11: 727-739
  • Mancuso S, Shabala S (2006) Rhythms in Plants. Springer Verlag
  • Scott P (2008) Physiology and Behaviour of Plants. John Willey & Sons Ltd
  • Trewavas A (2005) Plant intelligence. Naturwissenschaften 92: 401-413
  • Trewavas A (2009) What is plant behaviour? Plant Cell Environm 32: 606-616
  • Volkov AG (2006) Plant Electrophysiology. Springer Verlag

External links[edit]

  • Keen, Noel T; Shigeyuki Mayama, Jan E. Leach, and Shinji Tsujumu (eds) (2001). Delivery and Perception of Pathogen Signals in Plants. APS Press. p. 268. ISBN 0-89054-259-7. 
  • Taiz, Lincoln; Eduardo Zeiger (2002). "Plant Physiology Online". a companion to Plant Physiology, Third Edition. Sinauer Associates. Archived from the original on 7 December 2006. Retrieved 2006-12-26.