Polarimeter

From Wikipedia, the free encyclopedia
Jump to: navigation, search
An automatic digital polarimeter

A polarimeter [1] is a scientific instrument used to measure the angle of rotation caused by passing polarized light through an optically active substance.[2]

Some chemical substances are optically active, and polarized (unidirectional) light will rotate either to the left (counter-clockwise) or right (clockwise) when passed through these substances. The amount by which the light is rotated is known as the angle of rotation.

History[edit]

Polarization by reflection was discovered in 1808 by Étienne-Louis Malus (1775–1812).[2]

Measuring Principle[edit]

The ratio, the purity, and the concentration of two enantiomers can be measured via polarimetry. Enantiomers are characterized by their property to rotate the plane of linear polarized light. Therefore, those compounds are called optically active and their property is referred to as optical rotation. Light sources such as a light bulb, a light-emitting diode (LED), or the sun emit electromagnetic light waves. Their electric field oscillates in all possible planes relative to their direction of propagation. In contrast to that, the waves of linear-polarized light oscillate in parallel planes.[3]

If light encounters a polarizer, only the part of the light that oscillates in the defined plane of the polarizer may pass through. That plane is called the plane of polarization. The plane of polarization is turned by optically active compounds. According to the direction in which the light is rotated, the enantiomer is referred to as dextrorotatory or levorotatory.

The optical activity of enantiomers is additive. If different enantiomers exist together in one solution, their optical activity adds up. That is why racemates are optically inactive, as they nullify their clockwise and counter clockwise optical activities. The optical rotation is proportional to the concentration of the optically active substances in solution. Polarimeters may therefore be applied for concentration measurements of enantiomer-pure samples. With a known concentration of a sample, polarimeters may also be applied to determine the specific rotation (α physical property) when characterizing a new substance. The specific rotation [\alpha]_\lambda^T is a physical property and defined as the optical rotation α at a path length l of 1 dm, a concentration c of 1g/100 mL, a temperature T (usually 20 °C) and a light wavelength λ (usually sodium D line at 589.3 nm):

[4]:123
[\alpha]_\lambda^T = \frac{ 100 \times \alpha}{l \times c}

This tells us how much the plane of polarization is rotated when the ray of light passes through a specific amount of optically active molecules of a sample. Therefore, the optical rotation depends on temperature, concentration, wavelength, path length, and the substance being analyzed. [5]

Construction[edit]

The polarimeter is made up of two Nicol prisms (the polarizer and analyzer). The polarizer is fixed and the analyzer can be rotated. The prisms may be compared to as slits S1 and S2. The light waves may be considered to correspond to waves in the string. The polarizer S1 allows only those light waves which move in a single plane. This causes the light to become plane polarized. When the analyzer is also placed in a similar position it allows the light waves coming from the polarizer to pass through it. When it is rotated through the right angle no waves can pass through the right angle and the field appears to be dark. If now a glass tube containing an optically active solution is placed between the polarizer and analyzer the light now rotates through the plane of polarization through a certain angle, the analyzer will have to be rotated in same angle.

Operation[edit]

Polarimeters measure this by passing monochromatic light through the first of two polarising plates, creating a polarized beam. This first plate is known as the polarizer.[6] This beam is then rotated as it passes through the sample. After passing through the sample, a second polarizer, known as the analyzer, rotates either via manual rotation or automatic detection of the angle. When the analyzer is rotated to the proper angle, the maximum amount of light will pass through and shine onto a detector.

schematic set up of an automatic polarimeter: light source, polarizer, Faraday modulator, temperatur controlled sample cell, interference filter of a defined wavelength, analyzer and photo receiver

Types of polarimeter[edit]

Laurent's half-shade polarimeter[edit]

Biquartz polarimeter[edit]

Lippich polarimeter[edit]

Quartz-Wedge polarimeter[edit]

Manual[edit]

The earliest polarimeters, which date back to the 1830s, required the user to physically rotate one polarizing element (the analyzer) whilst viewing through another static element (the detector). The detector was positioned at the opposite end of a tube containing the optically active sample, and the user used his/her eye to judge the "alignment" when least light was observed. The angle of rotation was then read from a simple protractor fixed to the moving polariser to within a degree or so.

Although most manual polarimeters produced today still adopt this basic principle, the many developments applied to the original opto-mechanical design over the years have significantly improved measurement performance. The introduction of a half-wave plate increased "distinction sensitivity", whilst a precision glass scale with vernier drum facilitated the final reading to within ca. ±0.05º. Additionally, most modern day manual polarimeters also incorporate a long-life yellow LED in place of the more traditional and costly sodium arc lamp.

Semi-automatic[edit]

Today there are also semi-automatic polarimeters, which require visual detection but use push-buttons to rotate the analyzer and offer digital displays.

Fully automatic[edit]

The most modern polarimeters are fully automatic, and simply require the user to press a button and wait for a digital readout. Fast automatic digital polarimeters reduce measuring time to just one second, regardless of the rotation angle of the sample. In addition, they permit continuous measurement, for example for kinetic investigations or in HPLC.

Another feature of modern polarimeters is the Faraday modulator. The Faraday modulator creates an alternating current magnetic field. It oscillates the plane of polarization to enhance the detection accuracy by allowing the point of maximal darkness to be passed through again and again and thus be determined with even more accuracy.

As the temperature of the sample has a significant influence on the optical rotation of the sample, modern polarimeters have already included Peltier Elements to actively control the temperature. Special techniques like a temperature controlled sample tube reduce measuring errors and ease operation. Results can directly be transferred to computers or networks for automatic processing.[7]

MCP Polarimeters with already included Peltier elements from Anton Paar

Traditionally, accurate filling of the sample cell had to be checked outside the instrument, as an appropriate control from within the device was not possible. Nowadays a camera system allows accurate monitoring of the sample and filling conditions in the sample cell from inside the instrument. A telecentric camera gives a sharp image over the complete length of any sample cell placed within modern instruments. The online monitoring of the filling process ensures that no bubbles or particles obstruct the measurement. A picture can be saved together with the recorded data. Any temperature gradients, inhomogeneous sample distributions or air bubbles can immediately be recognized before measurement, so that potential errors caused by bubbles or particles are no longer an issue.

Sources of error[edit]

The angle of rotation of an optically active substance can be affected by:

  • Concentration of the sample
  • Wavelength of light passing through the sample (generally, angle of rotation and wavelength tend to be inversely proportional)
  • Temperature of the sample (generally the two are directly proportional)
  • Length of the sample cell (input by the user into most automatic polarimeters to ensure better accuracy)
  • Filling conditions (bubbles, temperature and concentration gradients)

Most modern polarimeters have methods for compensating or/and controlling these errors.

Calibration[edit]

Polarimeters can be calibrated – or at least verified – by measuring a quartz plate, which is constructed to always read at a certain angle of optical rotation (usually +34°, but +17° and +8.5° are also popular depending on the sample). Quartz plates are preferred by many users because solid samples are much less affected by variations in temperature, and do not need to be mixed on-demand like sucrose solutions.[8]

Applications[edit]

Because many optically active chemicals such as tartaric acid, are stereoisomers, a polarimeter can be used to identify which isomer is present in a sample – if it rotates polarized light to the left, it is a levo-isomer, and to the right, a dextro-isomer. It can also be used to measure the ratio of enantiomers in solutions.

The optical rotation is proportional to the concentration of the optically active substances in solution. Polarimetry may therefore be applied for concentration measurements of enantiomer-pure samples. With a known concentration of a sample, polarimetry may also be applied to determine the specific rotation (a physical property) when characterizing a new substance.

Chemical industry[edit]

Many chemicals exhibit a specific rotation as a unique property (an intensive property like refractive index or Specific gravity) which can be used to distinguish it. Polarimeters can identify unknown samples based on this if other variables such as concentration and length of sample cell length are controlled or at least known. This is used in the chemical industry.

By the same token, if the specific rotation of a sample is already known, then the concentration and/or purity of a solution containing it can be calculated.

Most automatic polarimeters make this calculation automatically, given input on variables from the user.

Food, beverage and pharmaceutical industries[edit]

Concentration and purity measurements are especially important to determine product or ingredient quality in the food & beverage and pharmaceutical industries. Samples that display specific rotations that can be calculated for purity with a polarimeter include:

Polarimeters are used in the sugar industry for determining quality of both juice from sugar cane and the refined sucrose. Often, the sugar refineries use a modified polarimeter with a flow cell (and used in conjunction with a refractometer) called a saccharimeter. These instruments use the International Sugar Scale, as defined by the International Commission for Uniform Methods of Sugar Analysis (ICUMSA).

See also[edit]

References[edit]

  1. ^ polarimeter. Princeton WordNet
  2. ^ a b Polarimeter. kenyon.edu
  3. ^ Hart, C. (2002), Organische Chemie, Wiley-VCH, ISBN 3-527-30379-0
  4. ^ F. A. Carey; R. J. Sundberg (2007). Advanced Organic Chemistry, Part A: Structure and Mechanisms (Fifth ed.). Springer. doi:10.1007/978-0-387-44899-2. 
  5. ^ http://www.anton-paar.com/corp-en/products/group/polarimeter/
  6. ^ Polarimetry. chem.vt.edu
  7. ^ Krüss Optronic "Polarimeters", Version 1.0, Hamburg, March 2012
  8. ^ Quartz Plate Calibration Standard. Rudolph Research
  9. ^ http://www.anton-paar.com/?eID=documentsDownload&document=31259&L=0

See also[edit]

References[edit]