Pollock's conjectures

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Pollock's conjectures are two closely related unproven conjectures in additive number theory. They were first stated in 1850 by Sir Frederick Pollock, better known as a lawyer and politician, but also a contributor of papers on mathematics to the Royal Society. These conjectures are a possible extension of the Fermat polygonal number theorem to three-dimensional figurate numbers, also called polyhedral numbers.

References[edit]

  • Dickson, L. E. (June 7, 2005). History of the Theory of Numbers, Vol. II: Diophantine Analysis. Dover. pp. 22–23. ISBN 0-486-44233-0. 
  • Frederick Pollock (1850). "On the extension of the principle of Fermat's theorem on the polygonal numbers to the higher order of series whose ultimate differences are constant. With a new theorem proposed, applicable to all the orders". Abstracts of the Papers Communicated to the Royal Society of London 5: 922–924. JSTOR 111069. 

External links[edit]