Polyamide

From Wikipedia, the free encyclopedia
Jump to: navigation, search

A polyamide is a macromolecule with repeating units linked by amide bonds. [1] Polyamides occur both naturally and artificially. Examples of naturally occurring polyamides are proteins, such as wool and silk. Artificially made polyamides can be made through step-growth polymerization or solid-phase synthesis yielding materials such as nylons, aramids, and sodium poly(aspartate). Synthetic polyamides are commonly used in textiles, automotive applications, carpets and sportswear due to their high durability and strength. The transportation industry is the major consumer, accounting for 35% of polyamide (PA) consumption. [2]

Classification[edit]

Polymers of amino acids are known are polypeptides or proteins.

According to the composition of their main chain, synthetic polyamides are classified as follows:

Polyamide family Main chain Examples of polyamides Examples of commercial products
Aliphatic polyamides Aliphatic PA 6 and PA 66 Zytel from DuPont, Technyl from Solvay, Rilsan and Rilsamid from Arkema
Polyphthalamides Semi-aromatic PA 6T = hexamethylenediamine + terephthalic acid Trogamid T from Evonik Industries, Amodel from Solvay
Aramides = aromatic polyamides Aromatic Paraphenylenediamine + terephthalic acid Kevlar and Nomex from DuPont, Teijinconex, Twaron and Technora from Teijin, Kermel from Kermel.

All polyamides are made by the formation of an amide function to link two molecules of monomer together. The monomers can be amides themselves (usually in the form of a cyclic lactam such as Caprolactam), α,ω-amino acids or a stoichiometric mixture of a diamine and a diacid. Both these kinds of precursors give a homopolymer. Polyamides are easily copolymerized, and thus many mixtures of monomers are possible which can in turn lead to many copolymers. Additionally many nylon polymers are miscible with one another allowing the creation of blends.

Nomenclature[edit]

The nomenclature for the resulting polyamide is write after "PA" for polyamide number(s) indicating the number of carbon atoms in aliphatic monomers, and letters for cyclic and aromatic monomers. One number after "PA" for a homopolymer based on one monomer, and two numbers or sets of letters where there are two monomers. For copolymers the comonomers or pairs of comonomers are separated by slashes, as shown in the examples below.

  • homopolymers :
  • copolymers :
    • PA 6/66 : [NH-(CH2)6−NH−CO−(CH2)4−CO]n−[NH−(CH2)5−CO]m made from caprolactam, hexamethylenediamine and adipic acid ;
    • PA 66/610 : [NH−(CH2)6−NH−CO−(CH2)4−CO]n−[NH−(CH2)6−NH−CO−(CH2)8−CO]m made from hexamethylenediamine, adipic acid and sebacic acid.

Homopolymer polyamides derived from one monomer

Monomer Polymer
caprolactam PA6
11-aminoundecanoic acid PA11
ω-aminolauric acid PA12

Homopolymer polyamides derived from pairs of diamines and diacids (or diacid derivatives). Shown in the table below are polymers which are or have been offered commercially either as homopolymers or as a part of a copolymer.

Putrescine MPMD HMD MXD Nonanediamine Decanediamine Dodecanediamine bis(para-aminocyclohexyl)methane trimethylhexamethylenediamine
Adipic acid 46 D6 66 MXD6
Sebacic acid 410 610 1010
Dodecanedioic acid 612 1212 PACM12
Terephthalic acid 4T DT 6T 9T 10T 12T TMDT
Isophthalic acid DI 6I

According to their crystallinity, polyamides can be:

According to this classification, PA66, for example, is an aliphatic semi-crystalline homopolyamide.

Polymerization chemistry[edit]

In living organisms, amino acids are condensed with one another by an enzyme to form amide groups (known as Peptides). The resulting polymers are known as polypeptides or proteins.

For the industrial production of synthetic polyamides with at least one aliphatic monomer ("nylon polymers"), the amide link is produced from the condensation reaction of an amino group and a carboxylic acid group. water is eliminated. For fully aromatic polyamides or 'aramids' e.g.Kevlar , the acid chloride is used as a monomer. The polymerization reaction with the amine group eliminates hydrogen chloride. The acid chloride route can be used as a laboratory synthesis to avoid heating and obtain an almost instantaneous reaction. [3]

The amino group and the carboxylic acid group can be on the same monomer, or the polymer can be constituted of two different bifunctional monomers, one with two amino groups, the other with two carboxylic acid or acid chloride groups.

Amino acids can be taken as examples of single monomer (if the difference between R groups is ignored) reacting with identical molecules to form a polyamide:

The reaction of two amino acids. Many of these reactions produce long chain proteins

Aramid (pictured below) is made from two different monomers which continuously alternate to form the polymer and is an aromatic polyamide:

The reaction of 1,4-phenyl-diamine (para-phenylenediamine) and terephthaloyl chloride to produce Aramid

Current market and forecast[edit]

As one of the largest engineering polymer families, the global demand of polyamide resins and compounds was valued at roughly US$20.5 billion in 2013. The market is expected to reach US$30 billion by 2020 by following an average annual growth of 5.5%.[4]

See also[edit]

References[edit]

  1. ^ Palmer, R. J. 2001. Polyamides, Plastics. Encyclopedia Of Polymer Science and Technology. doi:10.1002/0471440264.pst251
  2. ^ Market Study Engineering Plastics, Ceresana, Sep 2013 [1]
  3. ^ "Making nylon: The "nylon rope trick"". Royal Society of Chemistry. Retrieved 19 April 2015. 
  4. ^ "Market Report: Global Polyamide Market". Acmite Market Intelligence. 

Bibliography[edit]

Kohan, Melvin I. (1995). Nylon Plastics Handbook. Hanser/Gardner Publications. ISBN 9781569901892