Polynomials on vector spaces

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In mathematics, if F is a field, a single-variable F-valued polynomial of degree ≤ p on a vector space V is a map P : V → F of the form


for v ∈ V and Ak ∈ Lksym = the set of all F-valued symmetric k-linear forms for k = 0, ..., pP  is called homogeneous of degree p  if P = Ap  above.

Similarly, one can define an n-variable F-valued polynomial of degree  ≤ p  on V  to be

P(v_1,\dots,v_n)=\sum^{p}_{k=0}\sum^{m_k}_{j=0}A_{1,j,k}(v_1,\dots,v_1)\dots A_{n,j,k}(v_n,\dots,v_n)

where Ai,j,k ∈ Lpi,j,ksym  with  \sum^{n}_{i=0}p_{i,j,k}=k.  In this case P  is called homogeneous if we only have the k = p  summand in the above expression.

See also[edit]


  • Ralph Abraham, Joel Robbin. Transversal Mapppings and Flows, p 7. W. A. Benjamin Inc. 1967.